Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема Коши



Пусть y=f(x) непрерывна на [a; b] и диф. на (a; b). Аналогично, y=g(x) также непрерывна на [a; b] и диф. на (a; b), но g’(x) ≠ 0 для любого х. Тогда имеет место следующее утверждение: найдётся точка ξ (- (a;b) такая, что (f ‘(b) – f ‘(a))/(f(b) - f(a)) = f ‘(ξ)/g’(ξ)

Теорема Лагранжа. Пусть f(x) непрерывна на [a; b] и диф. на (a; b). Тогда найдётся точка ξ (- (a;b) такая, что f(b) – f(a) = f(ξ)(b-a)

Доказательство:

Возьмём g(x) = x. По теореме Коши найдётся ξ (- (a;b) такая, что (f(b)-f(a)) / (b-a) = f ‘(ξ)

Геометрический смысл:

Билет 23. Раскрытие неопределенностей по правилу Лопиталя.

Определение. Пусть функции f(x) и g(x) диф. в некоторой окрестности точки b. Одновременно являются б.м. или б.б. в т. b и пусть существует lim f ‘(x)/g’(x) (xàb). Тогда существует lim f(x)/g(x) (xàb) = lim f ‘(x)/g’(x).

Доказательство:

Применим к функциям f(x) и g(x) теорему Коши для отрезка [x0; x], лежащего в окрестности точки х0. Тогда f(x)-f(x0)/g(x)-g(x0) = f ‘(c)/g’(c). Учитывая что f(x0) и g(x0) = 0 получаем формулу. И при xà x0 величина х в пределе также стремится к х0.

Замечания:

1) Формула верна только справа налево

2) lim f(x)/g(x) ≠ lim (f(x)/g(x))’

3) Предел отношения функции может существовать, даже если не существует предела отношения производных

4) Правило Лопиталя применяется для раскрытия неопределённостей вида 0/0, беск/беск итд.

Билет 24. Монотонность функции на промежутке. Достаточное условие монотонности. Локальный экстремум. Необходимое условие экстремума. 1-е и 2-е достаточные условия экстремума. Исследование функции на монотонность и экстремум.

Определение. Функция монотонна на промежутке Х, если она возрастает (убывает) на всём промежутке.

Достаточное условие монотонности. Пусть для всех х (- Х f ‘(x)>0 (f’(x)<0). Тогда на Х функция возрастает (убывает)

Доказательство:

x1, x2 (- X, x1<x2. Тогда по теореме Лагранжа найдётся ξ (- (x1; x2) такая, что f(x2)-f(x1) = f ‘(ξ)(x2-x1). x2>x1 è f(x2)>f(x1)

Локальные экстремумы. Точка х0 называется точкой максимума функции y=f(x), если существует такая δ-окрестность точки х0, что для всех х ≠ х0 из этой окрестности выполняется неравенство: f(x)<f(x0). Максимум и минимум – точки экстремума. Функция может иметь экстремум лишь во внутр. точках.

Необходимое условие экстремума. Пусть функция y=f(x) диф. на Х и имеет во внутренней точке этого промежутка локальный максимум. Тогда f ‘(x0) = 0.

Доказательство: по теореме Фирма.

1ое достаточное условие экстремума. Пусть х0 – критическая точка функции f(x) и пусть f(x) диф. в некоторой проколотой окрестности Uε точки х0. Пусть далее в этой окрестности f ‘(x) больше 0 при х<x0 и f ‘(x)<0 при х>x0. Тогда х0 – точка локального максимума.

2ое достаточное условие экстремума. Пусть функция f(x) дважды непрерывна, диф. в некоторой окрестности стационарной т. х0, т.е. f ’(x0) = 0. Тогда если f ‘’(x0)>0, x0 – точка локального минимума, а если <0 – максимума.





Дата публикования: 2015-01-10; Прочитано: 195 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...