![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
, где P(x) = a0xn + a1xn-1 +…+an,
Q(x) = b0xm + b1xm-1 +…+bm - многочлены.
Итого:
Первый замечательный предел.
Второй замечательный предел.
Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.
Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:
Пример 1. Найти предел.
Пример 2. Найти предел.
Пример 3. Найти предел.
З
Пример 4. Найти предел.
Для нахождения пределов на практике пользуются следующими теоремами.
Теорема 1. Если существуют пределы f(x)=A,
g(x)=B, то
(f(x)+(g(x)) = A + B, (6.1)
f(x) g(x) = AB, (6.2)
f(x)/g(x) = A/B (B ¹ 0). (6.3)
Замечание. Выражения вида 0/0, ¥ /¥, 0 × ¥, ¥ - ¥ являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и нахождение пределов такого вида носит название “раскрытие неопределенностей”.
Теорема 2. (f(x))a = (
f(x)) a, где a = const, (6.4)
т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;
bf(x) =bA, где b = const,
f(x)=A; (6.5)
logc f(x) = logc
f(x), где c = const. (6.6)
Теорема 3.
= 1,
= 1, a = const, a >0,
= 1, (6.7)
(1 + a)1/ a = e, (6.8)
где e» 2.7 - основание натурального логарифма. Формулы (6.7) и (6.8) носят название первого и второго замечательного пределов.
Используются на практике и следствия формулы (6.8):
= logc e, (6.9)
(aa - 1)/a = ln a, (6.10)
((1 + a) m - 1)/a = m, (6.11)
в частности,
= 1.
Eсли x® a и при этом x > a, то пишут x® a+0. Если, в частности, a=0, то вместо символа 0+0 пишут +0. Аналогично если x®a и при этом x<a, то пишут x®a-0. Числа и
называются соответственно пределом справа и пределом слева функции f(x) в точке а. Для существования предела функции f(x) при x®a необходимо и достаточно, чтобы
=
.
Функция f(x) называется непрерывной в точке x0, если
. (6.12)
Условие (6.12) можно переписать в виде:
,
то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.
Если равенство (6.12) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.
Функция f(x) называется непрерывной справа в точке xo, если
,
и непрерывной слева в точке xo, если
.
Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.
Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.
1. Если существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.
2. Если равен ¥ или не существует, то говорят, что в точке xo функция имеет разрыв второго рода.
Например, функция y = ctg x при x® +0 имеет предел, равный +¥, значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.
Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.
Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.
Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел e = . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3)3»237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:
100 × (1 +1/10)10» 259 (ден. ед.),
100 × (1+1/100)100» 270 (ден. ед.),
100 × (1+1/1000)1000» 271 (ден. ед.).
При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что
= e.
Дата публикования: 2015-01-10; Прочитано: 433 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!