Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Некоторые замечательные пределы



, где P(x) = a0xn + a1xn-1 +…+an,

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

Итого:

Первый замечательный предел.

Второй замечательный предел.

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

Пример 1. Найти предел.

Пример 2. Найти предел.

Пример 3. Найти предел.

З

Пример 4. Найти предел.

Для нахождения пределов на практике пользуются следующими теоремами.

Теорема 1. Если существуют пределы f(x)=A, g(x)=B, то

(f(x)+(g(x)) = A + B, (6.1)

f(x) g(x) = AB, (6.2)

f(x)/g(x) = A/B (B ¹ 0). (6.3)

Замечание. Выражения вида 0/0, ¥ /¥, 0 × ¥, ¥ - ¥ являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и нахождение пределов такого вида носит название “раскрытие неопределенностей”.

Теорема 2. (f(x))a = ( f(x)) a, где a = const, (6.4)

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;

bf(x) =bA, где b = const, f(x)=A; (6.5)

logc f(x) = logc f(x), где c = const. (6.6)

Теорема 3. = 1, = 1, a = const, a >0,

= 1, (6.7)

(1 + a)1/ a = e, (6.8)

где e» 2.7 - основание натурального логарифма. Формулы (6.7) и (6.8) носят название первого и второго замечательного пределов.

Используются на практике и следствия формулы (6.8):

= logc e, (6.9)

(aa - 1)/a = ln a, (6.10)

((1 + a) m - 1)/a = m, (6.11)

в частности,

= 1.

Eсли x® a и при этом x > a, то пишут x® a+0. Если, в частности, a=0, то вместо символа 0+0 пишут +0. Аналогично если x®a и при этом x<a, то пишут x®a-0. Числа и называются соответственно пределом справа и пределом слева функции f(x) в точке а. Для существования предела функции f(x) при x®a необходимо и достаточно, чтобы = .

Функция f(x) называется непрерывной в точке x0, если

. (6.12)

Условие (6.12) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.12) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке xo, если

,

и непрерывной слева в точке xo, если

.

Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.

2. Если равен ¥ или не существует, то говорят, что в точке xo функция имеет разрыв второго рода.

Например, функция y = ctg x при x® +0 имеет предел, равный +¥, значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел e = . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3)3»237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10)10» 259 (ден. ед.),

100 × (1+1/100)100» 270 (ден. ед.),

100 × (1+1/1000)1000» 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что

= e.





Дата публикования: 2015-01-10; Прочитано: 407 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...