![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Объективность общим индексам придает их запись в агрегатном виде, предложенная испанцем Ласпейресом и немцем Пааше.
Агрегатный общий индекс Ласпейреса для количества товаров как первого фактора выручки определяется по формуле
=
(12)
Аналогично можно записать агрегатный общий индекс Ласпейреса для цен как первого фактора выручки, то есть
=
(13)
В формулах Ласпейреса знаменатели по существу одинаковые, представляя собой выручку базисного периода, а числители разные. В формуле (12) это отчетная выручка в базисных ценах (количество товаров отчетное, а цены — базисные), в формуле (13) наоборот — базисная выручка в отчетных ценах (цены отчетные, а количество товаров — базисное).
Агрегатные общие индексы Пааше применяются ко вторым факторам мультипликативных моделей. Поэтому такой индекс для цен как второго фактора выручки определяется по формуле
=
(14)
Аналогично можно записать агрегатный общий индекс Пааше для количества товаров как второго фактора выручки, то есть
=
(15)
В формулах Пааше числители по существу одинаковые, представляя собой выручку отчетного периода, а знаменатели аналогичны числителям формул Ласпейреса.
Произведения количественного индекса Ласпейреса и ценового индекса Пааше, а также ценового индекса Ласпейреса и количественного индекса Пааше дают общий индекс выручки.
Однако вид этих формул показывает, что однофакторные индексы Ласпейреса и Пааше не равны между собой. То есть не равными являются количественные индексы Ласпейреса и Пааше и ценовые. Американский экономист Гершенкрон обширными расчетами установил, что по одному и тому же фактору индекс Ласпейреса всегда больше индекса Пааше и это открытие названо эффектом Гершенкрона.
Но в статистике должно быть одно значение индекса, поэтому американский экономист Фишер предложил применять среднюю геометрическую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:
для количества товаров =
(16)
для цен =
(17)
Вместе с тем, проведенные Ворониным В.Ф. многочисленные расчеты показали, что для целей статистики вполне можно применять не среднюю геометрическую, а простую среднюю арифметическую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:
для количества товаров =
(18)
для цен =
(19)
Например, если индекс Ласпейреса 1,8 и индекс Пааше 1,4, то средний геометрический индекс по предложению Фишера равняется
IФ= =1,59,
а средний арифметический индекс по нашему предложению составит
IВ=(1,8+1,4)/2 = 1,60.
Как видим, разница очень незначительная. Но при этом важно во всехпериодах времени постоянно пользоваться одной и той же средней величиной: или геометрической, или арифметической.
Дата публикования: 2015-01-09; Прочитано: 223 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!