![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Ниже в качестве примера приведены задачи по кинематике. Ознакомившись с их решением, студенты могут перейти к решению задач для индивидуальной подготовки и после самостоятельного решения задач, приведенных в задании, подготовиться к контрольной работе на эту тему. Ответы на качественные вопросы помогут студентам глубже понять протекающие физические процессы, подготовиться к практическим занятиям и выполнению работ лабораторного практикума по теме «Кинематика» с последующим обсуждением результатов эксперимента.
Пример 1. Кинематическое уравнение движения точки по прямой (ось
) имеет вид
, где
,
,
. Для момента
определить координату точки
, мгновенные скорость
и ускорение
. Определить среднюю скорость
за первые две секунды
движения и среднее ускорение
за это время.
Решение. Необходимо определить параметры движения по кинематическому уравнению (прямая задача кинематики). Она решается последовательным применением уравнений (2.23; 2.7; 2.13; 2.4). Подставляя в уравнение движения
, получаем координату в указанный момент времени
.
Мгновенная скорость точки в этот момент равна
.
Знак «минус» показывает, что в момент времени
направление вектора скорости не совпадает с положительным направлением оси
.
Ускорение
.
Знак «минус» в этом случае указывает на то, что в заданный момент времени векторы скорости и ускорения имеют противоположное направление.
Средняя скорость (модуль вектора средней скорости)*

(обратите внимание на различие
и
).
Среднее ускорение

(обратите внимание на то, что
и
также отличаются друг от друга).
Ответ:
;
;
;
;
.
*Примечание. Кроме указанной в задаче средней скорости
рассматривают среднюю путевую скорость
, определяемую отношением пути S ко времени t, за которое пройден этот путь. Самостоятельно убедитесь в том, что эти скорости не равны (см. пример 2).
Пример 2. Ускорение материальной точки, движущейся вдоль оси
, изменяется по закону:
, где
,
. Начальная скорость
, начальная координата
. Запишите уравнение движения точки, определите ее координату, скорость, перемещение и пройденный точкой путь через t = 3 с после начала движения.
Решение. Определение вида кинематического уравнения движения по известному параметру (в данном случае это ускорение) является обратной задачей кинематики. Из уравнений (2.16) и (2.11) находим вид зависимости скорости точки от времени

и вид зависимости координаты точки от времени (кинематическое уравнение движения)
.
Подставляя в записанные уравнения значение времени
, получаем значения скорости и координаты
;
.
Модуль вектора перемещения 
(определите самостоятельно, совпадает ли направление вектора перемещения с положительным направлением оси
).
Поскольку начальная скорость точки положительна, а конечная – отрицательна, это значит, что скорость в процессе движения меняет знак, и путь не равен модулю вектора перемещения. Решая уравнение
относительно
, и учитывая, что время положительно, определяем его значение
, при котором скорость обращается в нуль.
Тогда пройденный путь равен
.
Ответ:
;
;
;
.
Пример 3. Для случая, представленного на рис. 2.5, записать:
1) кинематическое уравнение движения
точки А;
2) ее уравнения движения в проекциях на оси
и
:
и
;
3) уравнение траектории
.
На рисунке изображены координатные оси, указано начальное положение точки
, начальная скорость
и ускорение, равное ускорению свободного падения
.
Решение. Поскольку ускорение свободного падения постоянно по величине и направлению, движение является равноускоренным и описывается уравнением (2.22):
,
где
– радиус-вектор начального положения точки.
В проекциях на оси
и
получаем:
;
.
В данной задаче
(ускорение свободного падения направлено перпендикулярно оси
),
(знак «минус» показывает, что направление вектора ускорения свободного падения не совпадает с положительным направлением оси
),
,
,
,
.
Таким образом, уравнения движения в проекциях на оси
и
имеют вид:
;
.
Исключая время из двух последних уравнений, получаем уравнение траектории:
.
Ответ:
;
;
;
.
Пример 4. С вышки бросили камень в горизонтальном направлении. Через промежуток времени
камень упал на землю на расстоянии
от основания вышки. Определить высоту вышки
, начальную
и конечную
скорости камня, нормальное
и тангенциальное
ускорения камня, а также радиус кривизны R траектории в начальный момент времени и в момент падения камня на землю.
Решение. Ситуация, описанная в условии, представлена на рис. 2.6.
Выбирая систему координат так, как показано на рисунке, и используя метод составления уравнений движения, представленный в предыдущей задаче, получаем уравнения движения:
;
.
В момент падения камня на землю его координаты
,
. Поэтому уравнения движения принимают вид:
;
.
Из этих уравнений определяем начальную скорость камня
и высоту башни
.
Для расчета проекций
,
скорости на координатные оси и ее значения
дифференцируем
и
по времени (2.7, 2.8):
, в момент падения
;
, в момент падения
;
, в момент падения
.
В начальный момент времени полное ускорение
перпендикулярно скорости
, поэтому
,
. Чтобы найти нормальное и тангенциальное ускорение в момент падения, воспользуемся рис. 2.6, на котором изображены компоненты скорости
и
, полная скорость
, тангенциальное
, нормальное
и полное ускорение
в момент падения камня на землю. Из рисунка видно, что
,
где
– угол между
и
(или, соответственно, между
и
). Поэтому значения тангенциального и нормального ускорения
;
.
Радиус кривизны траектории определяется формулой (2.19). В начальный момент времени
,
и
. В момент падения камня на землю
,
и
.
Следует отметить, что начало координат и направления координатных осей можно было бы выбрать иным образом. Например, поместить начало координат в точку бросания и направить ось
вниз. Уравнения движения в этом случае изменятся, но результаты, естественно, останутся прежними.
Ответ:
;
;
; в начальный момент времени –
,
,
; в момент падения на землю –
,
,
.
Пример 5. Определить угловое ускорение
тела, если после
полных оборотов частота его вращения изменилась от
до
.
Решение. Полное число оборотов N и частота
вращения связаны с углом
поворота и угловой скоростью
соотношениями:
;
.
Считая, что начальный угол
, и, учитывая, что по условию задачи
, запишем уравнения движения равноускоренно вращающегося тела (2.29):
,
;
.
Решая совместно эти уравнения, получаем:
.
Ответ:
.
Дата публикования: 2015-01-14; Прочитано: 363 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
