![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
[59] «Спаивание» двух многогранников при помощи скрытых ребер было выставлено в качество аргументации Жонкьером (1890, стр. 171—172), который устранение монстров применяет против полостей и туннелей, а исправление — против увенчанных кубов и звездчатых многогранников. Первым протагонистом использования исправления монстров в защите теоремы Эйлера был Маттисен (1863). Он последовательно использует исправление монстров; при помощи введения скрытых ребер и граней ему удается «выяснить» всякую неэйлеровость, включая многогранники с туннелями и полостями. В то время как у Жонкьера спаивание представляет полную триангуляцию кольцеобразной грани, Маттисен спаивает с экономией, проводя лишь минимальное число ребер, превращающих грань в односвязные подграни (рис. 14). Маттисен удивительно уверен в своем методе превращения революционных контрапримеров в хорошо исправленные буржуазные эйлеровы образцы. Он считает, что «всякий многогранник может быть так проанализирован, что будет подтверждать теорему Эйлера...». Он перечисляет предполагаемые исключения, отмеченные поверхностным наблюдателем, и затем утверждает: «В каждом таком случае мы можем показать, что многогранник имеет скрытые грани и ребра; если пересчитать их, то они делают теорему V — Е + F = 2 справедливой даже для этих видимых исключительных случаев».
Мысль, что при помощи проведения дополнительных ребер, или граней, некоторые неэйлеровы многогранники могут быть преобразованы в эйлеровы, происходит, однако, не от Маттисена, но от Гесселя. Последний иллюстрировал это тремя примерами, используя изящные фигуры (1832, стр. 14—15). Но он использовал этот метод не для «исправления», но, наоборот, для «разъяснения исключений», показывая «совершенно аналогичные многогранники, для которых эйлеров закон справедлив».
[60] Эта последняя лемма слишком строга. Для целей доказательства достаточно будет заменить ее такой леммой, что «для получающейся после растягивания и триангулирования плоской треугольной сети V — Е + F = 1». Коши, по-видимому, не заметил эту разницу.
[61] В действительности такое доказательство было впервые предложено Рейхардом (Н. Reichardt, 1941, стр. 23), а также Ван дер Варденом (1941). Гильберт и Кон-Фоссен были удовлетворены лишь тем, что истинность утверждения Беты «легко увидеть» (1932, стр. 292 английского перевода).
[62] Polya (1945, стр. 142).
[63] Эта последняя фраза взята из интересной работы Алисы Амброз (Alice Ambrose, 1959, стр. 438).
[64] См. примечание 17. Метафора «застегивания молнии» изобретена Брайтвайтом (R. В. Braithwaite); однако он говорит только о «логических» и «теоретико-познавательных» застегивателях молний, но не об «эвристических» (1953, особенно стр. 352).
[65] Устранение монстров в защиту теоремы является очень важным приемом в неформальной математике. «В чем грешат примеры, для которых неверна формула Эйлера? Какие геометрические условия, уточняющие значения F, V и Е, могут обеспечить справедливость формулы Эйлера?» [Polya (1954), I, упр. 29]. Цилиндр дается в упражнении 24. Ответ таков: «...ребро...должно заканчиваться в углах» (стр. 225)... Полья формирует это вообще: «Довольно часто встречающееся в математических исследованиях положение заключается в следующем: теорема уже сформулирована, но нам требуется дать более точное определение смысла терминов, употребленных при формулировке, чтобы сделать ее строго доказанной» (стр. 55).
[66] Локальные, но не глобальные контрапримеры были разобраны в гл.3.
[67] Это соответствует парадоксу подтверждения [Гемпель (Hempel, 1945)].
[68] См. подстрочное примечание 61.
[69] См. реплику Альфы
[70] Истинные утверждения, не имеющие содержания (vacuously true), о которых говорит Гамма, представляют большое нововведение XIX в. Задний план этой проблемы еще не раскрыт.
[71] «Евклид употребляет аксиому, совершенно не сознавая ее» (Russell, 1903, стр. 407). «Сделать (sic!) скрытое допущение» является общей фразой у математиков и ученых. См. также обсуждение Гамовым доказательства Коши (1953, стр. 56) или Ивс-Ньюса (Eves-Newsom) об Евклиде (1958, стр. 84),
[72] См. реплику Альфы
[73] Хорошие учебники неформальной математики обычно уточняют свою «стенографию», т. е. те ложные или истинные леммы, которые они считают настолько тривиальными, что не заслуживают упоминания. Стандартное выражение для этого таково: «Мы предполагаем знакомство с леммами типа х». Количество того, что предполагается известным, уменьшается по мере того, как критика знание предполагаемое превращает в знание настоящее. Коши, например, даже не заметил, что его прославленное сочинение (1821) предполагало «знакомство» с теорией действительных чисел. Он отбросил бы как монстр всякий контрапример, который потребовал бы явного установления лемм о природе иррациональных чисел. Не так поступили Вейерштрасс и его школа: учебники по неформальной математике теперь содержат новую главу по теории действительных чисел, в которой собраны все эти леммы. Но в их «введениях» обычно принимается «знакомство с теорией рациональных чисел». См., например, Hardy «Pure Mathematics», начиная со второго издания (1914) и далее; в первом издании все еще считалось, что теория действительных чисел относится к предполагаемому у читателей знанию; или Rudin (1953). Более строгие учебники еще более уменьшают предполагаемое знание: Landau во введении к своей знаменитой книге (1930) предполагает знакомство только с «логическим рассуждением и немецким языком». Иронией судьбы Тарский в это же самое время показал, что опускаемые таким образом абсолютно тривиальные леммы могут быть не только неверными, но и несовместимыми, поскольку немецкий является семантически замкнутым языком. Кто может сказать, когда заявление «автор признает свое невежество в области x» заменит авторитетный эвфемизм «автор предполагает знакомство с областью x»? Наверное тогда, когда будет установлено, что знание не имеет основ.
[74] Когда это было впервые открыто, такая скрытая лемма рассматривалась как ошибка. Когда Беккер первый указал на «скрытое» (stillscliweigend) предположение в доказательстве Коши (он цитировал доказательство из вторых рук через Балцера, 1826—1827), то он назвал его «ошибкой» (1869, стр. 67—68). Он обратил внимание на то, что Коши все многогранники рассматривал как простые; его лемма была не только скрытой, но и ложной. Однако историки не могут представить себе, чтобы большие математики делали такие ошибки. Настоящую программу, как нужно фальсифицировать историю, можно найти у Пуанкаре (1908): «Доказательство, не являющееся строгим, есть ничто. Я думаю, что никто не станет оспаривать эту истину. Но если принимать ее слишком буквально, то мы должны прийти к заключению, что, например, до 1820 г. не существовало математики; это, очевидно, было бы чрезмерным: геометры того времени быстро понимали то, что мы теперь объясняем пространно и долго. Это не значит, что они этого совершенно не замечали, но они слишком скоро проходили через это. А заметить это как следует сделало бы необходимым потрудиться сказать это» (стр. 374). Замечание Беккера об «ошибке» Коши должно быть переписано на манер 1984 г.: «double plus ungood refs unerrors rewrite fullwise» («Язык 1984 года», изобретенный английским писателем Орвеллом, не создает новых слов, но отбрасывает лишние. Зачем писать «и», если существует термин «плюс», или «плохой», если можно сказать «нехороший»? В переводе на русский язык фраза звучала бы так: «двоякие плюс нехорошие опровержения неошибок переписывать полностью».— Прим. пер.). Это переписывание было сделано Штейпицем, который настаивал на том, что «тот факт, что эта теорема не могла быть верной в общем случае, вероятно, не мог оставаться незамеченным» (1914—1931, стр. 20). Пуанкаре сам применил свою программу к эйлеровой теореме: «Известно, что Эйлер доказал равенство V — Е + F = 2 для выпуклых многогранников» (1893). Эйлер, конечно, высказал свою теорему для всех многогранников.
[75] См. реплику Альфы.
[76] Наш класс был скорее передовым. Альфа, Бета и Гамма выразили подозрение против трех лемм, когда еще не появились глобальные контрапримеры. В действительной истории анализ доказательства появился позже через много декад: в течение долгого периода контрапримеры или замалчивались, или заклинались как чудовища, пли записывались как исключения. Эвристическое движение от глобального контрапримера к анализу доказательства — применение принципа обратной передачи ложности — было по существу неизвестно в неформальной математике раннего XIX столетия.
[77] Фордер (Н. G. Forder, 1927, стр. VIII). Или «Одной из главных заслуг доказательств является то, что они внушают некоторый скептицизм по отношению к доказанному результату» (Russell, 1903, стр. 360. Он дает также великолепный пример).
[78] Хорошо известно, что критика может вызвать подозрение или даже иногда опровергнуть «априорные истины» и, таким образом, превратить доказательства в простые объяснения. Такое отсутствие критицизма или опровержения может превратить не вполне допустимые догадки в «априорные истины»: это не так хорошо известно, но как раз также очень важно. Два самых ярких примера этого представляют возвышение и падение Евклида и Ньютона. История их падения хорошо известна, но историю их возвышения обычно не вполне понимают.
Геометрия Евклида, по-видимому, была предложена как космологическая теория (см. Popper, 1952, стр. 147—148). И ее «постулаты» и «аксиомы» (или «общие понятия») были предложены как смелые, вызывающие предложения, направленные против Парменида и Зенона, учения которых влекли за собой не только ложность, но даже логическую ложность, непредставимость этих «постулатов». Только позже «постулаты» были приняты как несомненно истинные, и смелые антипарменидовские «аксиомы» (вроде «целое больше части») были сочтены настолько тривиальными, что были опущены в позднейших анализах доказательства и превращены в «скрытые леммы». Этот процесс начался с Аристотеля; он заклеймил Зенона как любящего спорить чудака, и его аргументы как «софистику». Эта история была недавно рассказана с интересными подробностями Арпадом Сабо (1960, стр. 65—84). Сa6o показал, что в эпоху Евклида слово «аксиома», как и «постулат», обозначало предположение в критическом диалоге (диалектическом), выставленное для того, чтобы проверить следствия, причем партнер по дискуссии не обязан был принимать его как истину. По иронии истории его значение оказалось перевернутым. Вершина авторитета Евклида была достигнута в век просвещения. Клеро побуждал своих товарищей не «затемнять доказательств и раздражать читателей», выставляя очевидные истины: Евклид делал это лишь для того, чтобы убедить «упорствующих софистов» (1741, стр. X и XI).
Далее механика и теория тяготения Ньютона были выставлены как смелая догадка, которая была осмеяна и названа «темной» Лейбницем и была подозрительной даже для самого Ньютона. Но через несколько декад — при отсутствии опровержений — его аксиомы дошли до того, что были признаны несомненно истинными. Подозрения были забыты, критики получили клеймо «эксцентрических», если не «обскурантов»; некоторые из его наиболее сомнительных допущений стали рассматриваться настолько тривиальными, что учебники даже никогда не упоминали их. Дебаты — от Канта до Пуанкаре — шли уже не об истинности ньютоновской теории, но о природе ее достоверности. (Этот поворотный пункт в оценке ньютоновской теории был впервые указан Карлом Поппером — см. его книгу, 1963, passim.)
Аналогия между политическими идеологиями и научными теориями идет гораздо дальше, чем обычно полагают: положительные теории, которые первоначально могли дебатироваться (и, может быть, принимаемы только под давлением), могут превращаться в бесспорные основы знания даже за время одного поколения: критики бывали забыты (и, может быть, даже казнены) до тех пор, пока революция не выдвигала снова их возражений.
[79] Это правило, по-видимому, впервые было выдвинуто Зейделем (Ph. L. Seidel, 1847, стр. 383).
[80] «Я имею право выдвинуть пример, удовлетворяющий условиям вашей аргументации, и я сильно подозреваю, что те примеры, которые вы называете странными и искусственными, в действительности будут затрудняющими вас примерами, предосудительными для вашей теоремы» (Дарбу, 1874).
[81] «Я приведен в ужас множеством неявных лемм. Придется затратить много труда, чтобы избавиться от них» (Дарбу, 1883).
[82] См. параграф 4,б и реплику Учителя.
[83] Пуанкаре (1905, стр. 216).
[84] Там же, стр. 216. Изменения Критерия «строгости доказательства» производят в математике большие революции. Пифагорейцы считали, что строгие доказательства могут быть только арифметическими. Однако они открыли строгое доказательство, что Ö2 был «иррациональным». Когда этот скандал вышел наружу, то критерий был изменен: арифметическая интуиция была дискредитирована и ее место заняла геометрическая интуиция. Это означало большую и сложную реорганизацию математического знания (была введена теория пропорций). В восемнадцатом столетии «вводящие в заблуждение» чертежи испортили репутацию геометрических доказательств и девятнадцатый век увидел снова арифметическую интуицию, воцарившуюся при помощи сложной теории действительных чисел. Сегодня основные споры идут о том, что является или не является строгим в теоретико-множественных и математических доказательствах, как это видно из хорошо известной дискуссии о допустимости мысленных экспериментов Цермело и Гентцена.
[85] Как уже было указано, наш класс является очень передовым.
[86] Термин «психологизм» был создан Гуссерлем (1900). Раннюю «критику» психологизма см. у Фреге (Frege, 1893, стр. XV— XVI). Современные интуиционисты (не как Альфа) открыто принимают психологизм: «Математическая теорема выражает чисто эмпирический факт, а именно успех некоторого построения... математика есть изучение некоторых функций человеческого мозга» (Гейтинг (Heyting, 1956, стр. 8 и 10)]. Как они примиряют психологизм с достоверностью, представляет их хорошо охраняемый секрет.
[87] Что мы не смогли бы как следует выразить словами совершенное знание, даже если бы обладали им, было общим местом у древних скептиков [см. Секст Эмпирик (ок. 190), I, 83—87], но было забыто в век просвещения. Это было снова открыто интуиционистами: они приняли кантову философию математики, но указали, что «между совершенством собственно математики и совершенством математического языка нельзя видеть ясной связи» [Броувер (Brouwer), 1952, стр. 140]. «Выражение при помощи сказанного или написанного слова — хотя и необходимо для сообщения — никогда не бывает адекватным. Задача науки заключается не в изучении языков, но в создании идей» (Heyting, 1939, стр. 74-75).
[88] Brouwer (1952), стр. 141.
[89] Английский язык имеет термин «infinite regress», но это будет только частным случаем порочной бесконечности (schlechte Unendlichkeit) и не будет здесь применимым. Альфа, очевидно, построил фразу, имея в мыслях «порочный круг».
[90] Обычно, взяв альтернативную систему длинных определений, математики избегают длинных теорем, так что в теоремах появляются только определенные термины, например, «ординарный многогранник»; это будет более экономичным, так как одно определение сокращает много теорем. Даже и так определения занимают огромное место в «строгих» изложениях, хотя приводящие к ним монстры редко упоминаются. Определение «эйлерова многогранника» (с определениями некоторых определяющих терминов) занимает у Фордера (1927, стр. 67 и 29) около 25 строк; определение «ординарного многогранника» в издании 1962 г. «Encyclopedia Britannica» заполняет 45 строк.
[91] «Логика заставляет нас отбросить некоторые аргументы, но она не может заставить нас верить любому аргументу» (Лебег, 1928, стр. 328).
* Quod erat demonstrandum (лат.) — что требовалось доказать; Quod erat demonstratum (лат.) — что было доказано.— Прим. пер.
[92] Мур (Е. Н. Moore), 1902, стр. 411.
[93] «Природа уличает скептиков, рассудок уличает догматиков» [Паскаль, 1654. См. Oeuvres completes (Chevalier). Paris, 1954, стр. 1206—1207]. Немногие математики признаются, как Бета, что разум слишком слаб для оправдания самого себя. Большая часть их принимает некоторое клеймо догматизма, историзма или спутанного прагматизма и остается курьезно слепой к невозможности поддерживать это, например: «Математическое рассуждение проводится с такой скрупулезностью, которая делает его бесспорным и убедительным для каждого, кто только его поймет....Однако строгость математики не абсолютна: она развивается; принципы математики не застыли раз навсегда, а движутся и тоже могут служить и служат предметом научных споров» (А. Д. Александров, 1956, стр. 7). Эта цитата может напомнить нам, что диалектик пытается учитывать изменение, не пользуясь критицизмом; для него истины находятся «в непрерывном развитии», но всегда «полностью бесспорны».
* См. сноску 73.- Прим. пер.
[94] См. реплику Учителя.
[95] Обсуждение этого случая см. в гл.3.
[96] Омега, по-видимому, забывает третью возможность: Гамма может о успехом требовать, что поскольку локальные, но не глобальные, контрапримеры не обнаруживают какого-нибудь нарушения принципа обратной передачи ложности, то нет надобности в каких-нибудь действиях.
[97] См. параграф 5, г.
[98] Обсуждение этого второго случая см. после реплики Беты.
[99] См. там же.
[100] См. главу 3.
[101] См. там же.
[102] Доказательство Жергонна можно найти у Люилье (1812— 1813, стр. 177—179). В оригинале оно, конечно, не заключало никаких фотографических устройств. Оно гласило: «Возьмите многогранник с одной прозрачной гранью; представьте себе, что снаружи к этой грани приближается глаз настолько плотно, что может увидеть внутренние стороны всех других граней...» Жергонн скромно отмечает, что доказательство Коши является более глубоким, поскольку «оно имеет ценное преимущество, что совершенно не предполагает выпуклости» (однако ему не пришло в голову спросить, что же именно оно предполагает). Штейнер позднее снова открыл по существу то же самое доказательство (1826). Его внимание обратили на приоритет Жергонна; тогда он прочел работу Люилье со списком исключений, но это не помешало ему закончить свое доказательство такой «теоремой»: «Все многогранники являются эйлеровыми». Именно эта работа Штейнера заставила Гесселя — немецкого Люилье — написать свою работу (1832).
[103] Доказательство Лежандра можно найти в его работе (1794), но там нет теоремы, порожденной доказательством, так как анализ доказательства и образование теорем были в XVIII в. по существу неизвестны. Лежандр сначала определяет многогранники как твердые тела, поверхность которых состоит из многоугольных граней (стр. 161). Затем он доказывает, что V—E+F=2 вообще (стр. 228). Но здесь имеется устраняющая исключения поправка в примечании курсивом на стр. 164, гласящая, что будут рассматриваться только выпуклые многогранники. Он игнорировал почти выпуклое обрамление. Пуансо первый, комментируя доказательство Лежандра, заметил в своей работе (1809), что формула Эйлера справедлива не только для обыкновенных выпуклых тел, а именно, поверхность которых пересекается прямой линией не более чем в двух точках; она справедлива также для многогранников с входящими углами в предположении, что внутри тела можно найти точку, служащую центром сферы, на которую прямыми линиями, идущими из центра, можно спроектировать грани многогранника так, чтобы их проекции не перекрывали друг друга. Это применимо к бесконечному множеству многогранников с входящими углами. Действительно, при этом положении доказательство Лежандра применимо ко всем таким добавочным многогранникам.
[104] Жонкьер продолжает, снова заимствуя аргумент у Пуансо (1858): «Призывая Лежандра и подобные высокие авторитеты, только способствуешь широко распространенному предубеждению, которое пленило даже некоторые из наилучших интеллектов, а именно, что область применимости теоремы Эйлера ограничена только выпуклыми многогранниками» (1890а, стр. 111).
[105] Это из Пуансо (1858, стр. 70).
[106] Зоммервилъ (D. М. У. Sommerville), 1929, стр. 143—144.
[107] Этот «большой звездчатый додекаэдр» уже был придуман Кеплером (1619, стр. 58), затем независимо от него Пуансо (1809), который испытывал его на эйлеровость. Рисунок 15 скопирован с книги Кеплера.
[108] Я не был в состоянии определить, откуда взята эта цитата. (Это — шутливое подражание Галилею.— Прим. пер.)
[109] См. примечание 111.
[110] Ответ заключается в знаменитой папповой эвристике античности, которая применялась только к нахождению «финальных», «окончательных» истин, т. е. к теоремам, которые содержали сразу и необходимые и достаточные условия. Для «задач на доказательство» основное правило эвристики было: «Если у вас есть догадка, то выведите из нее следствия. Если вы придете к следствию, о котором известно, что оно ложно, то догадка была ложной. Если вы придете к следствию, о котором известно, что оно истинно, то обратите порядок доказательств и, если догадка может быть таким образом выведена из истинных следствий, то она была истинной» (ср. Heath, 1925, 1, стр. 138—139). Принцип «causa aequat effectu» (причина равна следствию.— Прим. пер.) и поиски теорем с необходимыми и достаточными условиями заключались в этой традиции. Только в семнадцатом веке, когда все усилия применить паппову эвристику к новой науке оказались тщетными, поиски верности получили верх над поисками окончательности.
[111] Это доказательство принадлежит Пуанкаре [см. его работы (1893) и (1899)].
[112] Есть много других доказательств догадки Эйлера. Детальный эвристический разбор доказательств Эйлера, Жордана и Пуанкаре см. Lacatos (1961).
[113] Пуансо, Люилье, Коши, Штейнер, Крелле все думали, что различные доказательства доказывают одну и ту же теорему — «теорему Эйлера». Процитируем характерную фразу из стандартного учебника: «Эта теорема восходит к Эйлеру, первое доказательство дано Лежандром, второе Коши» (Крелле, 1827, II, стр. 671).
Пуансо очень близко подошел к тому, чтобы заметить эту разницу, когда сказал, что лежандрово доказательство применимо не только к обыкновенным выпуклым многогранникам. (см. примечание 103). Но когда он затем сравнил доказательство Лежандра с эйлеровым (тем, которое основано на обрезании пирамидальных углов многогранника так, что в окончательном результате получается тетраэдр с неизменившейся эйлеровой характеристикой) (1751), то он отдал предпочтение лежандрову на основании «простоты». Эта «простота» стоит здесь в согласии с идей XVIII в. о строгости: ясность в мысленном эксперименте. Ему не пришло в голову сравнить оба доказательства по содержанию; тогда эйлерово доказательство оказалось бы более высоким. (По существу в доказательстве Эйлера нет никаких неправильностей. Лежандр применил субъективный стандарт современной ему строгости и пренебрег объективным стандартом содержания.)
Люилье в скрытой критике этого места (он не упоминает Пуансо) указывает, что простота Лежандра является только «кажущейся», потому что она предполагает довольно большое предварительное знание сферической тригонометрии (1812—1813, стр. 171). Но Люилье тоже верит, что Лежандр «доказал ту же теорему», что и Эйлер (там же, стр. 170).
Штейнер присоединяется к нему в оценке доказательства Лежандра и в мнении, что все доказательства доказывают ту же теорему (1826). Единственная разница заключается в том, что, по Штейнеру, все различные доказательства доказывают, что «все многогранники будут эйлеровыми», по Люилье же, все различные доказательства доказывают, что «все многогранники, не имеющие туннелей, пустот и кольцевидных граней, будут эйлеровыми».
Коши написал свою работу (1811) о многогранниках, когда ему еще было чуть больше двадцати лет, задолго до его революции строгости, и нельзя упрекать его, что он во введении ко второй части своего трактата повторяет принадлежащее Пуансо сравнение доказательств Эйлера и Лежандра. Он — как и большинство его современников — не понял различия в глубине разных доказательств и не мог оценить действительную силу своего собственного доказательства. Он думал, что дал только еще одно доказательство той же самой теоремы, но с готовностью подчеркивал, что просто получил тривиальное обобщение формулы Эйлера для некоторых групп многогранников.
Жергонн был первым, кто оценил несравненную глубину доказательства Коши (Люилье, 1812—1813, стр. 179).
[114] См. реплику Омеги и реплику Мю.
[115] См. реплику Омеги.
[116] Эта задача, была отмечена Люилье (1812—1813, стр. 189) и независимо от него Гесселем (1832). В статье Гесселя рисунки обеих картинных рам помещены рядом. См. также подстрочное примечание 134.
[117] Полья называет это «парадоксом изобретателя» (1945, стр. 110).
[118] См. примечание 123. Эта таблица заимствована у Полья (1954, т. I, стр. 36).
[119] См. главу 1.
[120] Это важное уточнение для примечания 17.
[121] Полья (1957), т. I, стр. 5 и 7.
[122] См. прим.118.
[123] Эти испытания и ошибки были прекрасно реконструированы Полья. Первая догадка состоит в том, что F возрастает вместе с V. Когда это было отвергнуто, то последовали еще две догадки: Е возрастает вместе с F; E возрастает вместе с V. Четвертой была выигрышная догадка: Р + V возрастает вместе с Е (1954, т. I, стр. 35—37).
[124] С другой стороны, те, которые вследствие обычного дедуктивного представления математики начинают думать, что путь открытия идет от аксиом и (или) определений к доказательствам и теоремам, могут полностью забыть о возможности и важности наивного угадывания. Фактически в математической эвристике наибольшую опасность представляет дедуктивизм, тогда как в научной эвристике, наоборот, индуктивизм.
[125] Возрождением математической эвристики в этом веке мы обязаны Полья. Его подчеркивание сходств между математической и научной эвристикой является одной из важных черт его замечательного труда. То, что можно рассматривать как единственную его слабость,— связано с его силой: он никогда не ставил под вопрос индуктивность науки и вследствие своего правильного представления глубоких аналогий между научной и математической эвристикой пришел к мысли, что математика тоже является индуктивной. То же самое случилось ранее с Пуанкаре (см. его книгу, 1902, Введение) и также с Фреше (1938).
[126] См. реплику Альфы.
[127] Согласно эвристике Паппа, математическое открытие начинается с догадки, за которой следует анализ. Предполагается, что если анализ не обнаружит ложность догадки, то затем следует синтез (см. примечания 17 и 110). Но в то время как наше понимание анализа-синтеза улучшает предположение, паппово понимание только доказывает или отвергает его.
[128] См. Robinson (1936), стр. 471.
[129] См. реплику Учителя.
[130] Это было сделано Рашигом (Raschig, 1891).
[131] Норре (1879), стр. 102.
[132] Это тоже часть папповой эвристики. Анализ, начинающийся с догадки, он называет «теоретическим», а анализ, начинающийся без догадки,— «проблемным» (Heath, 1925, т. I, стр. 138). Первый относится к проблемам для доказательства, а второй — к проблемам для решения (или к проблемам для нахождения). См. также Polya (1945), стр. 129-136 («Папп») и 197-204 («Работая назад»).
[133] Этот «порядок» был восстановлен Люилье приблизительно с той же формулой (1812—1813, стр. 189) и Гессолем с нескладной, придуманной ad hoc формулой относительно различных способов соединения друг с другом эйлеровых многогранников (1832, стр. 19—20). Ср. примечание 116.
[134] Исторически Люилье в своей книге (1812—1813) при помощи наивной догадки сумел обобщить формулу Эйлера и пришел к такой формуле: V — Е + F = 2[(с — Т + 1) + (р1, + р2 +...)], где с — число полостей, Т — туннелей и pi — число внутренних многоугольников на каждой грани. Он также доказал ее для «внутренних многоугольников», но туннели как будто доставили ему затруднения. Он построил эту формулу, пытаясь разобраться в своих трех видах «исключений», но его список исключений неполон (см. примечание 37). Более того, эта неполнота не была единственной причиной ложности его наивной догадки; он не заметил, что могут существовать многосвязные полости, что не всегда можно однозначно определить число туннелей в многограннике с разветвляющимися туннелями, и что основное значение имеет не «число внутренних многоугольников», но число кольцеобразных граней (его формула отказывает в случае двух прилегающих внутренних многоугольников с общим ребром). Критику индуктивного обобщения Люилье можно найти у Листинга (1861, стр. 98—99). См. также примечание 159.
[135] Очень небольшое число математиков девятнадцатого столетия были смущены таким тривиальным увеличением содержания и действительно не знали, что с ним делать. Некоторые — вроде Мебиуса — пользовались определениями, устраняющими монстры (см. стр. 24); другие — вроде Гоппе — исправлением монстров. Книга Гоппе (1879) в особенности показательна. С одной стороны, он — как большое число его современников — очень хотел получить совершенно законченную «обобщенную формулу Эйлера», которая покрывала бы все. С другой стороны, он чувствовал отвращение к тривиальным сложностям. Поэтому, говоря, что его формула «полная, всеобъемлющая», он смущенно добавлял, что «особые случаи могут сделать сомнительным перечисление (составных элементов)» (стр. 103). Иными словами, если какой-нибудь неуклюжий многогранник не подходит под его формулу, то его элементы были неправильно сосчитаны и это уродство должно быть исправлено при помощи правильного зрения; например, общие вершины и ребра тетраэдров-близнецов должны быть увидены и сосчитаны дважды и каждый близнец должен считаться за отдельный тетраэдр (там же). Дальнейшие примеры см. примечание 166.
Дата публикования: 2014-11-28; Прочитано: 257 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!