![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Тета. Я думаю, что Гамма прав относительно необходимости проведения раздельной линии между рациональным и иррациональным расширением понятий. Действительно, расширение понятий зашло слишком далеко и из скромной рациональной деятельности превратилось в радикальную и иррациональную.
Первоначально критика сосредоточивалась исключительно на небольшом расширении одного частного понятия. Оно должно было быть небольшим, чтобы мы не могли его заметить; если бы его действительная — расширяющая — природа была увидена, то оно могло не быть принятым как законная критика. Оно сосредоточивается на одном частном понятии, как в случае наших несофистических универсальных предложений «Все А суть В». В таком случае критик хочет найти слегка расширенное А (в нашем случае многогранник), которое не будет В (в нашем случае эйлеров).
Но Каппа заострил это в двух направлениях. Во-первых, чтобы подвергнуть расширяющей понятие критике более чем одну составную часть предложения, находящегося под ударом. Во-вторых, превратить расширение понятий из тайной и даже скромной деятельности в открытое деформирование понятия вроде превращения «все» в «не». Здесь в качестве опровержения принимается любой имеющий смысл перевод терминов атакуемого предложения, который делает теорему ложной. Тогда я сказал бы, что если предложение не может быть опровергнуто в отношении своих составных частей: а, b,.., то оно будет логически истинным для этих составных частей[178]. Такое предложение представляет конечный результат длинного критико-спекулятивного процесса, в течение которого смысловой груз некоторых терминов полностью перенесен на остальные термины и на форму теоремы.
Теперь все, что говорит Каппа, сводится к тому, что не существует предложений, логически истинных для всех их составных частей. Но могут быть предложения, логически истинные по отношению к некоторым составным частям, так что поток опровержений может быть открытым снова, если будут добавлены новые составные части, могущие быть расширенными. Если мы доведем дело до конца, то кончим иррационализмом,— но мы в этом не нуждаемся. Теперь, где же должны мы провести граничную линию? Мы можем допустить расширение понятий только для особо выделенной подгруппы составных частей, которые станут первыми мишенями для критики. Логическая истинность не будет зависеть от их значения.
Сигма. Таким образом, в конце концов мы приняли пункты Каппы: мы сделали истину не зависящей от значения по крайней мере некоторых из терминов!
Тета. Это верно. Но если мы хотим разбить скептицизм Каппы и избегнуть его порочных бесконечностей, то мы непременно должны остановить расширение понятий в той точке, где оно перестает быть орудием роста и становится орудием разрушения: может быть, нам придется определить, какими будут термины, значение которых может быть расширено только за счет уничтожения основных принципов рациональности[179].
Каппа. Можем ли мы расширять понятия в вашей теории критической рациональности? Или будет ли это очевидно истинным, формулированным в не допускающих расширения точных терминах, которые не нуждаются в определении? Не кончится ли ваша теория критицизма «обращением к суду»? Можно ли критиковать все, кроме вашей теории критицизма, вашей «метатеории»[180]?
Омега (к Эпсилону). Мне нравится этот отход от истины к рациональности. Чьей рациональности? Я чувствую конвенционалистскую инфильтрацию.
Бета. О чем вы говорите? Я понимаю «мягкий образец» Теты расширения понятий. Я также понимаю, что расширение понятий может атаковать более чем один термин: мы видели это, когда Каппа расширял «расширение» или когда Гамма расширял «все»...
Сигма. Но Гамма, конечно, расширял «односвязные»!
Бета. Ну нет. «Односвязные» — это сокращение — он расширил только термин «все», который попался среди определяющих слов[181].
Тета. Вернемся к делу. Вы чувствуете себя несчастными из-за «открытого» радикального расширения понятий?
Бета. Да. Никто не захочет принять эту последнюю выпущенную марку за настоящее опровержение! Я хорошо вижу, что мягкая расширяющая понятия тенденция эвристического критицизма, раскрытая Пи, представляет наиболее важный двигатель математического роста. Но математики никогда не примут эту последнюю дикорастущую форму опровержения!
Учитель. Вы неправы, Бета. Они приняли ее и их принятие было поворотным пунктом в истории математики. Эта революция в математическом критицизме изменила понятие о математической истине, изменила стандарты математического доказательства, изменила характер математического роста [182]. Но теперь закроем на данный момент нашу дискуссию; об этой новой стадии мы поговорим в другое время.
Сигма. Но ведь ничего не установлено. Мы не можем остановиться теперь.
Учитель. Сочувствую вам. Эта последняя стадия даст важные источники пищи для нашей дискуссии[183]. Но научное исследование «начинается и кончается проблемами»[184]. (Покидает классную комнату).
Бета. Но вначале у меня не было проблем! А теперь у меня нет ничего, кроме проблем!
Литература
Abel N. Н. (1826). Письмо к Ганстину, в «Oeuvres». Sylow, Lie (Eds.), Christiania, vol. II, 1881, 263—265.
Aetius (ок. 150). Placita.
Alexandrov A. D. (1956). Введение к Aleksandrov, Kholmogorov, Lavrentiev (eds). Mathematics, its content, methods and meaning. Moscow; английский перевод S. H. Goura.— Am. Math. Soc., Rhode Island, 1962.
Ambrose A. (1959). Proof and the theorem, proved.—Mind, N. S., 67, 435-445.
Arber A. (1954). The mind and the eye. Cambridge.
Arnauld A. (1724). L'art de penser. Paris.
Вa1tzer R. (1860—62). Die Elemente der Mathematik I—II. Leipzig. Bartley W. W. (1962). Retreat to commitment. N. Y.
Becker J. C. (1869). Ueber Polyeder. Z. Math, und Physik, 14, 65-76.
Becker J. C. (1869a). Nachtrag zu dem Aufsatze iiber Polyeder.— Z. Math, und Physik., 14, 337—433.
Becker J. C. (1874). Neuer Beweis und Erweiterung eines Fundamentalsatzes uber Polyederflachen.— Z. Math, und Physik, 19, 459—460.
Bell E. T. (1945). The Development of mathematics, 2nd ed. N. Y.
Berard J. B. (1818—19). Sur le nombre des racines imaginaries des equations; en reponse aux articles de MM. Tederat et Servois.— Ann. de math, purcs et appl., 9, 345—372.
Bernays P. (1947). Review of Polya's «How to solve it».—Dialectica, 1, 178—188.
Bolzano B. (1837). Wissenschaftslehre. Versuch einer ausfuhrlichen und gro'ssenteils neuen Darstellung der Logik mit steter Riicksicht auf deren bisherige Bearbeiter. Sulzbach.
Braithwaite R. B. (1953). Scientific explanation. Cambridge.
Brouwer L. E. J. (1952). Historical background, principles and methods of intuitionism.—South African J. Sci., 49 (1952—53), 139-146.
Carnap R. (1937). The logical syntax of language. N. Y. London (просмотренный перевод «Logische Syntax der Sprache». Vienna, 1934).
Cauchy A. L. (1811). Recherches sur les polyedres.—J. de 1'Ecole Polytechnique, 1813, 9, 68—86. (Прочитано в февр. 1811 г.)
Cauchy A. L. (1812). Sur les polygones et les polyedres.—J. de 1'Ecole Polytechnique, 1813, 9, 87—98. (Прочитано в январе 1812 г.)
Cauchy A. L. (1821). Cours d'Analyse. Paris.
Cayley A. (1859). On Poinsot's four new regular solids.— The London, Edinburgh and Dublin Philos. Mag. and J. Sci., 4th ser., 17, 123—128.
Cayley A. (1861). On the partitions of a close.—The London, Edinburgh and Dublin Philos, Mag. and J. Sci., 4th ser., 21, 424—428.
Church A. (1956). Introduction to mathematical logic. I. Princeton.
Clairaut A. C. (1741). Elements de Geometrie. Paris.
Copi I. M. (1949). Modern logic and the synthetic a priori.— J. Philos., 46, 243—245.
Copi I. M. (1950). Goedel and the synthetic a priori: a rejoinder.- J. Philos., 47, 633-63C.
Crelle A. L. (1826—27). Lehrbuch der Elemente der Geometrie. Berlin, I—II.
Curry H. B. (1951). Outlines of a formalist philosophy of mathematics. Amsterdam.
Darboux C. (1874). Письмо к Houel, цитируется у F. Rostand: Souci d'exactitude et scrupules des mathematiciens.— Paris, 1960, 11.
Darboux С. (1874a). Письмо к Houel, цитируется у F. Rostand: Souci d'exactitude et scrupules des mathematiciens. Paris, 1960, 194.
Darboux C. (1883). Письмо к Houel, цитируется у F. Rostand: Souci d'exactitude et scrupules des mathematiciens. Paris, 1960, 261.
Denjoy A. (1919). L'orientation actuelle des mathematiques.—Revue du mois, 20, 19—28.
Descartes R. (1628). Regulae ad Directionem Ingenii. Цитируется по переводу Haldane — Ross.
Descartes R. (ок. 1639). De solidorum elementis, впервые опубликовано Foucher de Careil: Oeuvres inedites de Descartes, II. Paris, 1860, 214—234. Значительно исправленный текст, см. Adam — Tannery. Oeuvres de Descartes, vol. X. Paris, 1908, 257-278.
Dieudonne J. (1939). Les methodes axiomatiques modernes et les fondements des mathematiques.— Rev. sci., 77, 225—231.
Diogenes Laertius (ок. 200). Жизнеописания греческих философов.
Einstein A. (1953). Письмо к P. A. Schilpp, опубликовано в Schilpp: The Abdication of Philosophy, Kant Studien, 51, 1959—60, 490—91
Euler L. (1750). Elementa Doctrinae Solidorum. Novi commenta-rii academiae scientiarum Petropolitanae (1752—1753), 1758, 4, 109—140. (Прочитано в ноябре 1750 г.)
Euler L. (1751). Demonstratio nonnullarum insignium proprietatum quibus solida hedris planis inclusa sunt praedita, Novi commen-tarii academiae scientiarum Petropolitanae (1752—1753), 1758, 4, 140—160. (Прочитано в сентябре 1751 г.).
Euler L. (1753). Specimen de usu observationum in mathesi pura. Novi commentarii academiae scientiarum Petropolitanae, (1756— 57), 1761, 6, 185—230. Издательское резюме, ibid., 19—21.
Eves and Newsоm (1958). An introduction to the foundations and fundamental concepts of mathematics. N. Y.
Felix. (1957). L'aspect moderne des mathematiques. Paris.
Forder H. G. (1927). The foundations of euclidean geometry. Cambridge.
Frechet M. (1928). Les espaces abstraits. Paris.
Frechet M. (1938). L'analyse generale et la question de fondements. В книге Gonseth (изд.). Les Entretien de Zurich, 1941.
Frege C. (1893). Grundgesetze der Arithmetik, I. Jena.
Gamow С. (1953). One, two, three... infinity. N. Y.
Goldschmidt R. (1933). Some aspects of evolution.— Science, 78, 539-547.
Grunert J. A. (1827). Einfacher Beweis der von Gauchy und Eu-ler gefundeaen Satze von Figurennetzen und Polyedern.— J. die reine und angew. Math., 2, стр. 367.
Hardy G. H. (1928). Mathematical proof.—Mind. N. S., 38, 1—25,
Haussner R. (ed.) (1906). Abhandlungen iiber die regelmassigen Sternkorper.— Ostwald's Klassiker der Wissenschaften, N 151. Leipzig.
Heath Th. L. (1925). The thirteen books of Euclid's elements, второе издание. (Первое издание появилось в 1908 г.).
Hempel С. G. (1945). Studies in the logic of confirmation, I—II.— Mind, N. S., 54, 1-26, 97-121.
Hermite C. (1893). Lettre a Stieltjes, 20 mai 1893, Correspondence d'Hermite et de Stieltjes, Publiee par les soins de B. Baillaud et H. Bourget, I—II. Paris, 1905, vol. II, 317—319.
Hessel F. Ch. (1832). Nachtrag zu dem Euler'schen Lehrsatze von Polyedern.— J. die reine und angew. Math. 8, 13—20.
Hetting A. (1939). Les fondements des mathematiques du point de vue intuitioniste. Appendix to F. Gonseth: Philosophic mat-hematique. Paris.
Hey ting A. (1956). Intuitionism. An introduction. Amsterdam.
Hilbert D., Cohn-Vossen S. (1956). Geometry and imagination. N. Y. Оригинальное немецкое издание: Anschauliche Geo-metrie. Berlin, 1932.
Hobbes T. (1651). Leviathan, or the matter, form and power of a Commonwealth, Ecclesiastical and Civil. London.
Hobbes T. (1656). The questions concerning liberty, necessity and chance, clearly stated and debated between Dr. Bramhall, Bishop of Derry, and Thomas Hobbes of Malmesbury. London.
Holder O. (1924). Die mathematische Methode. Berlin.
Hoppe R. (1879). Erganzung des Eulerschen Satzes von den Polyedern.—Arch. Math, und Physik, 63, 100—103.
Husserl E. (1900). Logische Untersuchungen, I. Halle.
Jonquieres E. de (1890a). Note sur un point fondamental de la theorie des polyedres.— Comptes rendus des seances de L'Acade-mie des Sciences, 170, 110—115.
Jonquieres E. (1890b). Note sur le theoreme d'Euler dans la theorie des polyedres.— Comptes rendus des seances de ГАса-demie des Sciences, 110, 169—173.
Jordan C. (1866). Recherches sur les polyedres.—J. die reine und angew. Math., 57, 22—85.
Jordan C. (1866a). Resume de recherches sur la symetrie des polyedres non Euleriens.— J. die reine und angew. Math., 57, 86-91.
Kant I. (1781). Kritik der reinen Vernunft. Riga.
Kepler I. (1619). Harmonices mundi. Lincii.
Lakatos I. (1961). Essays in the Logic of mathematical discovery, Ph. D. Dissertation. Cambridge.
Lakatos I. (1962). Infinite Regress and the foundations of mathematics, Aristotelian society supplementary volume. 36, 155—184.
Landau E. (1930). Grundlagea der Analysis. Leipzig.
Lebesgue H. (1923). Notice sur la vie et les travaux de Camille Jordan. Перепечатано в H. Lebesgue: Notices d'Histoire des Mathematiques. Geneve, 1958, 40—65.
Lebesgue H. (1928). Lemons sur 1'integration. Paris. Второе, увеличенное издание первоначального 1903 г.
Legendre (1794). Elements de geometric. Paris. Нумерация страниц по изданию 1809 г.
Lhuilier S. A. J. (1812—1813). Memoire sur polyedrometrie: con-tenant une demonstration directe du Theoreme d'Euler sur les polyedres, et un examen des diverses exceptions auxquelles ce theoreme est assujetti.— (Extrait) par M. Gergonne.— Annal. math, pures et appl., 3, 169—191. Lhuilier S. A. J. (1812—1813a). Memoire sur les solides reguliers.— Ann. math, pures et appl., 3, 233—237.
Listing J. B. (1861). Der Census raumlicher Complexe.—Abhandl. Koniglichen Gesellschaft Wiss. Gatingen, 10, 97—182. (Прочитано в декабре 1861 г.)
Matthiessen L. (1863). Ueber die scheinbaren Einschrankungen des Euler'schen Satzes von den Polyedern.— Z. Math, und Physik, 8, 449—450.
Meister A. L. F. (1769—1770). Generalia de genesi figurarum planarum et inde pendentibus earum affectionibus, Novi Com-mentarii Societatis Regiae Scientiarum Gottingensis, 1771, 1, 144—180.
Moebius A. F. (1827). Der baryzentrische Calcul. Leipzig.
Moebius A. F. (1865). Ueber die Bestimmung des Inhaltes eines Polyeders.— Ber. Konigl. Sachs. Ges. d. Wiss., Math.-phys. Klasse, 17, 31—68.
Moore E. H. (1902). On the foundations of mathematics.—Science, 17 (1903), 401-416.
Munroe M. E. (1953). Introduction to Measure and Integration.Cambridge, Mass.
Neumann J., von (1947). The mathematician. В Heywood (ed.); The works of the mind. Chicago (Перепечатано в «Collected works», vol. I, 1961, 1—9).
Newton I. (1717). Optics, or, a treatise of the reflections, refractions, inflections and colours of light, second Ed. London.
Olivier L. (1826). Bemerkungen iiber Figuren, die aus beliebigen von geraden Linien umschlossenen Figuren zusammengesetzt sind.— J. die reine und angew. Math., I, 1826, 227—231.
Pascal B. (1657—1658). Les Reflexions sur la Geometric en general (De 1'esprit geometrique et de 1'art de persuader).
Peanо C. (1894). Notations de logique mathematique. Turin.
Poincare H. (1893). Sur la generalisation d'un theoreme d'Euler relatif aux polyedres.— Comptes rendus des seances de 1'Acade-mie des Sciences, 117, 144.
Poincare H. (1899). Complement а l’Analysis Situs. Rendiconti del Circolo Matematico di Palermo, 13, 285—343.
Poincare H. (1902). La Science et 1'Hypothese. Paris. Авторизованный английский перевод В. Halsted: The foundations of science, 27—197. Lancaster, Pa, 1913.
Poincare H. (1905). La Valeur de la Science, Paris; авторизованный перевод G. В. Halsted: The foundations of science, 27—197. Lancaster, Pa, 1913.
Роinсare H. (1908). Science et Methode. Paris. Авторизованный английский перевод G. В. Halsted: foundations of science, 359— 546. Lancaster, Pa, 1913.
Poinsot L. (1809). Memoire sur les polygones et les polyedres.— «J. de 1'Ecole Polytechnique», 1810, 4, 16—48. (Прочитано в июле 1809 г.)
Poinsot L. (1858). Note sur la theorie des polyedres.—Comptes rendus de 1'Academie des Sciences, 46, 65—79.
Po1уa G. (1945). How to solve it. Princeton.
Polуa G. (1954). Mathematics and plausible reasoning, I—II. London.
Polуa G. (1962a). Mathematical discovery, I. N. Y.
Polya G. (1962b). The teaching of mathematics and the biogene-tic law. «The scientist speculates» (ed. L. J. Good). London, 352—356.
Polya G., Szego G. (1925). Aufgaben und Lehrsatze aus der Analysis. Berlin.
Popper K. R. (1934). Logik der Forschung. Vienna (Английский перевод: The logic of scientific discovery. London, 1958).
Popper K. R. (1945). The open society and its enemies. London.
Popper K. R. (1947—1948). Logic without assumptions.—Aristotelian Soc. Proc. 47, 251—292.
Popper K. R. (1952). The nature of philosophical problems and their roots in science.— Brit. J. Philos. Sci., 3, 124—156. Перепечатано в 1963а.
Popper K. R. (1957). The poverty of Historicism. London.
Popper K. R. (1963a). Conjectures and refutations. London.
Popper K. R. (1963b). Science: problems, aims, responsibilites.— Federation Am. Soc. Exp. Biol. Federation Proc., 22, 961—972.
Quine W. V. O. (1951). Mathematical logic, пересмотренное издание. Cambridge, Mass. (1-е издание 1940).
Raschig L. (1891). Zum Eulerschen Theorem der Polyedrometrie. Festschrift des Gymnasium. Schneeberg.
Reichardt H. (1941). Losung der Aufgabe 274,—Jahresberichte Dtsch. Math. Vereinigung, 51, 23.
Riemann B. (1851). Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse, Inaugural dissertation. Gottingen.
Robinson R. (1936). Analysis in Greek Geometry.—Mind, 45, 464—73.
Robinson R. (1953). Plato's earlier dialectic. Oxford.
Rudin W. (1953). Principles of mathematical analysis. N. Y.
Russel B. (1901). Recent work in the philosophy of mathematics.— Int. Monthly, 3.
Russel B. (1903). Principles of mathematics. London.
Russel B. (1918). Mysticism and logic. London.
Saks S. (1933). Theorie de Fintegrale. Warsaw. Английский перевод второго издания: Theory of the integral. Warsaw, 1937.
Schlafli L. (1852). Theorie der vielfachen Kontinuitat. Посмертно опубликовано в «Neue Denkschrifton der allgemeinen Schwei-zerischen Gesellschaft fur die gesamten, Naturwissenschaften», 38. Zurich, 1901.
Schroder E. (1892). Ueber dio Vielecke von gebrochener Seiton-zahl oder die Bedeutung der Stern-polygone in der Geometric.— Z. Math, und Physik., 7, 55—64.
Seidel Ph. L. (1847). Note iiber eine Eigenschaft der Reihen, weiche discontinuirliche Functionen darstellen. «Abhandl. Math.-Phys. Klasse der Kgl. Bayerischen Akademie Wiss., 5, 381—394.
Sextus Empiricus (ок. 190). Против логиков.
Somruerville D. M. Y. (1929). An introduction to the geometry of n-dimensions. London.
Steiner J. (1826). Leichter Beweis eines stereometrischen Satzes von Euler.— J. die reine und angew. Math., 1, 364—367.
Steinhaus H. (1960). Mathematical snapshots. N. Y., Revised and enlarged edition.
Steeinitz E. (1914—1931). Polyeder and Raumeinteilungen. В W. Fr. Meyer, H. Mohrmann (eds.): Encyklopadie der mathema-tischen Wissenschaften. Leipzig, Bd. Ill, AB. 12. Szabo A. (1958). Deiknymi als mathematischer Terminus fur «Beweisen».—Maia, N. S., 10, 1—26.
Szabo A. (I960). Anfange des euklidischen Axiomensystems.—Arch. History. Exact Sci., 1, 1960, 37—106.
Тarski A. (1930a). Uber einige fundamental Begriffe der Meta-mathematik.— Comptes rendus des seances de la Societe et des Lettres de Varsovie, 23, Cl. Ill, 22—29. На английском языке опубликовано в Tarski: Logic, semantics, metamathematics. Oxford, 1956, pp. 30—37.
Tarski A. (1930b). Fundamental Begriffe der Methodologie der deduktiven Wissenschaften, I.— Monatshefte Math, und Physik, 37, 361—404. На английском языке опубликовано в Tarski: Logic, semantics, metamathematics. Oxford, 1956, 60—109.
Tarski A. (1935). On the concept of logical consequence. Опубликовано в Tarski: Logic, semantics, metamathematics. Oxford, 1956, 409—420. Доклад был прочитан в 1935.
Tarski A. (1941). Introduction to Logic and to the methodology of deductive sciences. N. Y. Second ed., 1946. Это частично измененный и расширенный перевод «On mathematical logic and deductive method» (польский оригинал опубликован в 1936, немецкий перевод в 1937).
Turquette А. (1950). Godel and the synthetic a priori,—J.Philos. 47, 125—129.
Waerden B. L., van der (1941). Topologie und Uniformisierung der Riemannsches Flachen.— Bericnte der Math. Phys. Klasse der Sachsischen Akademie der Wissenschaften. Leipzig, 93, 148—160.
Whitehead A.N., Russell B. (1910—1913). Principia mathe-matica, vol. I, 1910, vol. II; 1912; vol. Ill, 1913. Cambridge.
Wilder R. I. (1944). The nature of mathematical proof.— Am. Math. Monthly, 51, 309—323.
Zacharias M. (1914—1931). Elementargeometrie. В W. Fr. Meyer, H. Mohrmann (eds.): Encyklopadie der mathematischen Wissenschaften, III, AB, 9. Leipzig.
Примечания Г.Копылова, превратившего текст книги в файл
С тех пор, как вышла книга Лакатоса в переводе И.Веселовского, многое изменилось: фамилия Полья теперь переводится как Пойа, многие источники, указанные в списке литературы, переведены на русский язык (другие труды Лакатоса, Поппер, Тарский, Пуанкаре и пр.). Но я не стал ничего менять, кроме очевидных погрешностей перевода.
[1] См. Чёрч (Church) (1956), 1, стр. 76—77. Также у Пеано (1894), стр. 49 и у Уайтхеда — Рассела (1910—1913), 1, стр. 12. Это интегральная часть евклидовой программы, формулированной Паскалем (1657—1658); ср. Лакатос (1962), стр. 158.
* Ситуационная логика — принадлежащий, по-видимому, Попперу малораспространенный термин, обозначающий логику продуктивную, логику математического творчества.— Прим. пер.
[2] Подробности и аналогичные ссылки см. в библиографическом списке в конце статьи.
[3] Б. Рассел (В. Russel, 1901). Эта работа была перепечатана как 5-я глава труда Рассела (1918) под заглавием «Математика и метафизика». В издании «Пингвина» (1953) цитату можно найти на стр. 74. В предисловии к труду (1918) Рассел говорит об этой работе: «Тон этого очерка отчасти объясняется тем, что издатель просил меня сделать его „сколь возможно романтическим"».
[4] Согласно Тюркетту (Turquette), положения Геделя не имеют смысла (1950), стр. 129. Тюркетт спорит с Копи (Copi), который считает, что, поскольку эти положения являются «априорными истинами», но не аналитическими, то они опровергают аналитическую теорию априорности (1949) и (1950). Никто из них не замечает, что особый статус положений Геделя с этой точки зрения состоит в том, что эти теоремы являются теоремами неформальной содержательной математики и что в действительности они оба обсуждают статус неформальной математики в частном случае. Они также не замечают, что теории неформальной математики определенно являются догадками, которые с точки зрения догматиста вряд ли возможно разделить на догадки a priori и a posteriori.
[5] Polya (1945), в особенности стр. 102 и также (1954), (1962а); Bernays (1947), в особенности стр. 187.
[6] Popper (1934), затем (1945), в особенности стр. 90 в четвертом издании (1962, стр. 97), а также (1957), стр. 147 и сл.
[7] Это можно иллюстрировать работами Тарского (1930а) и (1930b). В первой статье Тарский пользуется термином «дедуктивные науки» явно как стенографическим выражением для «формализованных дедуктивных наук». Он говорит: «Формализованные дедуктивные дисциплины составляют поле исследований метаматематики примерно в том же смысле, как пространственные сущности составляют поле исследований для геометрии». Этой разумной формулировке придается занятный империалистический уклон во второй статье. «Дедуктивные дисциплины составляют предмет (subjectmatter) методологии дедуктивных наук примерно в таком же смысле, в каком пространственные сущности составляют предмет геометрии, а животные — зоологии. Естественно, не все дедуктивные дисциплины представляются в форме, подходящей для объектов научного исследования. Неподходящими будут, например, такие, которые не опираются на определенный логический базис, не имеют точных правил вывода (inference) и в которых теоремы формулируются в обычных двусмысленных и неточных терминах разговорного языка — одним словом, те, которые не формализованы. Метаматематические исследования, таким образом, сводятся к рассмотрению лишь формализованных дедуктивных дисциплин». Нововведением является то, что в первой формулировке устанавливается, что предметом метаматематики являются формализованные дедуктивные дисциплины, в то время как вторая говорит, что предмет метаматематики сводится к формализованным дедуктивным дисциплинам только по той причине, что неформализованные дедуктивные дисциплины вообще не являются подходящим предметом научного исследования. Это предполагает, что предыстория формализованной дисциплины не может быть предметом научного исследования, в то время как, наоборот, предыстория зоологического вида вполне может быть предметом научной теории эволюции. Никто не будет сомневаться, что к некоторым проблемам, касающимся математической теории, можно подойти только после того, как они будут формализованы, совершенно так же, как некоторые проблемы относительно человеческих существ (например, касающиеся их анатомии) могут быть изучаемы только после их смерти. Но на этом основании не многие будут утверждать, что человеческие существа будут «пригодны для научного исследования», только когда они «представляются в мертвом виде», и что, следовательно, биологические исследования сводятся к изучению мертвых человеческих существ, хотя я не был бы изумлен, если бы какой-нибудь энтузиаст — ученик Везалия в славные дни ранней анатомии, когда появились новые мощные методы диссекции, отождествил биологию с анализом мертвых тел.
В предисловии к работе (1941) Тарский подчеркивает свое отрицание возможности какой-нибудь методологии, отличной от формальных систем: «Курс методологии эмпирических паук... должен главным образом состоять из оценок и критик скромных попыток и безуспешных усилий». Причина заключается в том, что, поскольку Тарский определяет научную теорию «как систему подобранных утверждений, расположенных в соответствии с некоторыми правилами» (там же), то эмпирические науки не являются науками.
[8] Одно из наиболее опасных заблуждений сторонников формалистской философии заключается в том, что (1) они стараются установить что-нибудь (вполне правильно) относительно формальных систем; (2) затем сказать, что это применимо и к «математике» — это будет опять правильно, если мы примем отождествление математики с формальными системами; (3) наконец, со скрытым изменением смысла, использовать термин «математика» в обычном смысле. Так, Куайн говорит (1951, стр. 87), что «это отражает характерную для математики ситуацию; математик наталкивается на свое доказательство при помощи неуправляемой интуиции и „счастья", а затем другие математики могут проверить его „доказательство"». Но проверка обычного доказательства часто представляет очень деликатное предприятие, и, чтобы напасть на «ошибку», требуется столько же интуиции и счастья, сколько и для того, чтобы натолкнуться на доказательство; открытие «ошибок» в неформальных доказательствах иногда может потребовать десятилетий, если не столетий.
[9] Пуанкаре и Полья предлагают «основной биологический закон» Геккеля относительно онтогенеза, повторяющего филогенез, применять также и к умственному развитию, в частности, к математическому умственному развитию [Пуанкаре (1908), стр. 135 и Полья (1962b)]. Цитируем Пуанкаре: «Зоологи утверждают, что эмбриональное развитие животного повторяет всю историю его предков в течение геологического времени. По-видимому, то же происходит и в развитии ума... По этой причине история науки должна быть нашим первым руководителем».
[10] По поводу дискуссии относительно роли математики в догматико-скептическом споре см. мою работу (1962).
[11] Впервые замечено Эйлером (1750). Первоначальной его задачей было дать классификацию многогранников. На трудность этого было указано в заключении издателя: «В то время как в плоской геометрии многоугольники (figurae rectilineae) легко могут быть классифицированы по числу сторон, которое, конечно, всегда будет равно числу углов, в стереометрии классификация многогранников (corpora hedris planis inclusa) представляет собой значительно более трудную задачу, так как только одно число граней недостаточно для этой цели». Ключом к полученному Эйлером результату было как раз введение понятий вершины и ребра; он первый указал на то, что кроме числа граней число точек и линий на поверхности многогранника определяет его (топологический) характер. Интересно отметить, что, с одной стороны, он очень хотел подчеркнуть новизну его концептуальной основы и что ему пришлось изобрести термин «acies» (ребро) вместо старого «latus» (сторона), так как «latus» было понятием, относящимся к многоугольникам, тогда как ему нужно было ввести понятие, относящееся к многогранникам; с другой стороны, он все же удержал термин «angu1us sо1idus» (телесный угол) для подобных точке вершин. С недавнего времени стали считать, что приоритет в этом деле принадлежит Декарту. Основанием этого притязания является рукопись Декарта (ок. 1639), скопированная с оригинала Лейбницем в Париже в 1675—1676 гг. и снова открытая и опубликованная Foucher de Careil в 1860 г. Однако приоритет Декарту отдать нельзя. Верно, что Декарт устанавливает, что число плоских углов равно 2j+2a—4, где j обозначает у него число граней, а a — число телесных углов. Также верно то, что он устанавливает, что плоских углов вдвое больше, чем ребер (latera). Простое соединение двух этих положений, конечно, даст формулу Эйлера. Но Декарт не видел надобности сделать это, так как он все же мыслил в терминах углов (плоских и телесных) и граней и не сделал сознательного революционного изменения, а именно: не ввел понятия нуль-мерных вершин, одномерных ребер и двумерных граней в качестве необходимого и достаточного основания для полной топологической характеристики многогранников.
Дата публикования: 2014-11-28; Прочитано: 253 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!