Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Суть иерархической кластеризации состоит в последовательном объединении меньших кластеров в большие или разделении больших кластеров на меньшие.
Иерархические агломеративные методы (Agglomerative Nesting, AGNES)
Эта группа методов характеризуется последовательным объединением исходных элементов и соответствующим уменьшением числа кластеров.
В начале работы алгоритма все объекты являются отдельными кластерами. На первом шаге наиболее похожие объекты объединяются в кластер. На последующих шагах объединение продолжается до тех пор, пока все объекты не будут составлять один кластер.
Иерархические дивизимные (делимые) методы (Divisive ANAIysis, DIANA)
Эти методы являются логической противоположностью агломеративным методам. В начале работы алгоритма все объекты принадлежат одному кластеру, который на последующих шагах делится на меньшие кластеры, в результате образуется последовательность расщепляющих групп.
Принцип работы описанных выше групп методов в виде дендрограммы показан на рис.13.3.
Шаг 0 Шаг 1 Шаг 2 Шаг 3 Шаг 4
Агломеративные
методы
Дивизимные
методы
Шаг 4 Шаг 3 Шаг 2 Шаг 1 Шаг 0
Рис. 13.3. Дендрограмма агломеративных и дивизимных методов
Программная реализация алгоритмов кластерного анализа широко представлена в различных инструментах Data Mining, которые позволяют решать задачи достаточно большой размерности. Например, агломеративные методы реализованы в пакете SPSS, дивизимные методы — в пакете Statgraf.
Иерархические методы кластеризации различаются правилами построения кластеров. В качестве правил выступают критерии, которые используются при решении вопроса о "схожести" объектов при их объединении в группу (агломеративные методы) либо разделения на группы (дивизимные методы).
Иерархические методы кластерного анализа используются при небольших объемах наборов данных.
Преимуществом иерархических методов кластеризации является их наглядность.
Иерархические алгоритмы связаны с построением дендограмм (от греческого dendron — "дерево"), которые являются результатом иерархического кластерного анализа. Дендрограмма описывает близость отдельных точек и кластеров друг к другу, представляет в графическом виде последовательность объединения (разделения) кластеров.
Дата публикования: 2014-11-18; Прочитано: 1055 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!