Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Возникает следующий вопрос — как определить расстояния между кластерами? Существуют различные правила, называемые методами объединения или связи для двух кластеров.
Метод ближнего соседа или одиночная связь: здесь расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Этот метод позволяет выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В результате работы этого метода кластеры представляются длинными "цепочками" или "волокнистыми" кластерами, "сцепленными вместе" только отдельными элементами, которые случайно оказались ближе остальных друг к другу.
Метод наиболее удаленных соседей, или полная связь. Здесь расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Метод хорошо использовать, когда объекты действительно происходят из различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является «цепочечным», то этот метод не следует использовать.
Метод Варда (Ward's method): в качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центров кластеров, получаемый в результате их объединения (Ward, 1963). В отличие от других методов кластерного анализа для оценки расстояний между кластерами, здесь используются методы дисперсионного анализа. На каждом шаге алгоритма объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров и "стремится" создавать кластеры малого размера.
Метод невзвешенного попарного среднего (метод не взвешенного попарного арифметического среднего — unweighted pair-group method using arithmetic averages, UPGMA (Sneath, Sokal, 1973)).
В качестве расстояния между двумя кластерами берется среднее расстояние между всеми парами объектов в них. Этот метод следует использовать, если объекты действительно происходят из различных "рощ", в случаях присутствия кластеров «цепочного» типа, при предположении неравных размеров кластеров.
Метод взвешенного попарного среднего (метод взвешенного попарного арифметического среднего — weighted pair-group method using arithmetic averages, WPGM A (Sneath, Sokal, 1973)). Этот метод похож на метод невзвешенного попарного среднего, разница состоит в том, что здесь в качестве весового коэффициента используется размер кластера (число объектов, содержащихся в кластере).
Дата публикования: 2014-11-18; Прочитано: 782 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!