Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Понятие множества мы используем без определения. Но как узнать, является та или иная совокупность множеством или не является?
Считают, что множество определяется своими элементами, т.е. множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит.
Множество можно задать, перечислив все его элементы. Например, если мы скажем, что множество А состоит из чисел 3, 4, 5, и 6, то мы задали это множество, поскольку все его элементы окажутся перечисленными. При этом возможна запись, в которой перечисляемые элементы заключаются в фигурные скобки: А = {3, 4, 5, 6}.
Однако если множество бесконечно, то его элементы перечислить нельзя. Трудно задать таким способом и конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множества: указывают характеристическое свойство его элементов.
Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит.
Рассмотрим, например, множество А двузначных чисел: свойство, которым обладает каждый элемент данного множества, – «быть двузначным числом». Это характеристическое свойство дает возможность решать вопрос о том, принадлежит какой-либо объект множеству А или не принадлежит. Так, число 45 содержится в множестве А, поскольку оно двузначное, а число 145 множеству А не принадлежит, так как оно не является двузначным.
Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными соседними сторонами и как множество ромбов с прямым углом.
В тех случаях, когда характеристическое свойство элементов множества можно представить в символической форме, возможна соответствующая запись множества. Например, множество А натуральных чисел, меньших 7, можно задать так: А = { х | х N и х < 7}. При такой записи буквой х обозначается элемент множества А. Для этих целей можно использовать и другие буквы латинского алфавита.
Пример 4. Даны множества: М = {2; 3; 5; 7}, N = {-5; -4; -3; -2}, F = {x| x Z, -6 < x < -1}, D = {x| x N, x < 10, x – простое число}. Какие множества равны между собой?
Решение: Множества F и D заданы характеристическими свойствами. Для того, чтобы сравнить их между собой и с остальными множествами, сформулируем их характеристические свойства словами, а затем зададим их перечислением элементов.
F – множество целых чисел, больших «-6» и меньших «-1». Этому свойству удовлетворяют числа -5, -4, -3, и -2. Из этих чисел состоит множество N. Значит, F = N.
D – множество натуральных чисел, которые меньше 10 и являются простыми. Этому свойству удовлетворяют числа 2, 3, 5 и 7. Из этих чисел состоит множество M. Следовательно, D = M.
Дата публикования: 2014-11-18; Прочитано: 1519 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!