![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Метод основан на ЗНК и позволяет сократить число совместно решаемых уравнений с до
.
Последовательность расчета:
а) выбираем положительные направления токов в ветвях;
б) выбираем независимые контуры и обозначаем их контурные токи; количество независимых контуров равно ;
в) составляем систему алгебраических уравнений для контурных токов:
,
,
……………………………………………………...
.
Здесь ,
, …,
– контурные токи первого, второго и
-го контуров; сопротивления с двумя индексами (
,
, …,
) – собственные сопротивления контуров, равные арифметической сумме сопротивлений всех ветвей, входящих в рассматриваемый контур; сопротивления с двумя различными индексами
(
,
,
,
и т.д.) – общее сопротивление контуров
и
, причем
;
- алгебраическая сумма произведений тока
, источника тока
- й обобщенной ветви, смежной с контуром
, на её сопротивление
; при этом со знаком плюс (минус) берутся те произведения, ток
которых совпадает (противоположен) с направлением контурного тока
. Правые части уравнений представляют собой контурные ЭДС, равные алгебраической сумме ЭДС, действующих в рассматриваемом контуре, при этом с положительным (отрицательным) знаком берутся те ЭДС, положительные направления которых совпадают (противоположны) с произвольно выбранным направлением обхода данного контура. В отличие от собственных сопротивлений общее сопротивление может быть как положительным, так и отрицательным: если контурные токи, проходящие через общее сопротивление, совпадают по направлению, то данное сопротивление больше нуля, в противном случае - отрицательно.
г) после определения контурных токов находим действительные токи в ветвях схемы, при этом необходимо учитывать положительные направления контурных токов и выбранные в начале положительные направления токов в ветвях схемы.
Пример. Составить уравнения по МКТ для ЭЦ, показанной на рис.2.1 и определить токи в ветвях.
Выберем положительные направления токов в соответствии с рисунком.
Для каждого независимого контура составляем уравнения:
I | ![]() |
II | ![]() |
III | ![]() |
Решив полученную систему уравнений относительно контурных токов, найдем токи в ветвях:
;
;
;
;
;
.
Дата публикования: 2014-11-03; Прочитано: 791 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!