Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Для решения задачи следует использовать следующие сведения



1.) Каноническое уравнение прямой

L: (1)

M0 (x0;y0;z0) - любая точка на прямой L.

l, m, n – проекции направляющего вектора прямой L на оси Ox, Oy, Oz соответственно. Хотя бы одно из чисел l, m, n отлично от нуля.

2). Уравнение прямой, проходящей через две заданные точки M1 (x1,y1, z1) и M2 (x2,y2, z2),

(2)

где (x 1,y 1,z 1) - координаты одной точки на прямой, (x2,y2,z 2) - координаты другой точки на прямой, (x,y,z) - координаты любой точки на прямой.

3.) Параметрическое уравнение прямой

(3)

M0 (x0;y0;z0) - любая точка на прямой, l, m, n – проекции направляющего вектора прямой, t – параметр, изменяя который можно получить все точки прямой.

4.) Условие параллельности прямых





Дата публикования: 2014-11-04; Прочитано: 324 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...