Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Реологические свойства крови



Реология (от греч. rheos - течение, поток, logos - учение) -это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических особенностей крови как вязкой жидкости.

Вязкость (внутреннее трение) жидкости - свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой. Вязкость жидкости обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. Наличие вязкости приводит к диссипации энергии внешнего источника, вызывающего движение жидкости, и переходу ее в теплоту. Жидкость без вязкости (так называемая идеальная жидкость) является абстракцией. Всем реальным жидкостям присуща вязкость. Основной закон вязкого течения был установлен И. Ньютоном (1687 г.) - формула Ньютона:

(1),

где F [Н] - сила внутреннего трения (вязкости), возникающая между слоями жидкости при сдвиге их относительно друг друга; η [Па·с] - коэффициент динамической вязкости жидкости, характеризующий сопротивление жидкости смещению ее слоев; dV/dZ [1/c] - градиент скорости, показывающий, на сколько изменяется скорость V при изменении на единицу расстояния в направлении Z при переходе от слоя к слою, иначе -скорость сдвига; S [м2] - площадь соприкасающихся слоев.

Сила внутреннего трения тормозит более быстрые слои и ускоряет более медленные слои. Наряду с коэффициентом динамической вязкости рассматривают так называемый коэффициент кинематической вязкости ν=η / ρ (ρ - плотность жидкости). Жидкости делятся по вязким свойствам на два вида: ньютоновские и неньютоновские.

Ньютоновской называется жидкость, коэффициент вязкости которой зависит только от ее природы и температуры. Для ньютоновских жидкостей сила вязкости прямо пропорциональна градиенту скорости. Для них непосредственно справедлива формула Ньютона, коэффициент вязкости в которой является постоянным параметром, не зависящим от условий течения жидкости.

Неньютоновской называется жидкость, коэффициент вязкости которой зависит не только от природы вещества и температуры, но также и от условий течения жидкости, в частности от градиента скорости. Коэффициент вязкости в этом случае не является константой вещества. При этом вязкость жидкости характеризуют условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (например, давление, скорость). Зависимость силы вязкости от градиента скорости становится нелинейной: ,

где n характеризует механические свойства при данных условиях течения. Примером неньютоновских жидкостей являются суспензии. Если имеется жидкость, в которой равномерно распределены твердые невзаимодействующие частицы, то такую среду можно рассматривать как однородную, т.е. мы интересуемся явлениями, характеризующимися расстояниями, большими по сравнению с размером частиц. Свойства такой среды в первую очередь зависят от η жидкости. Система же в целом будет обладать уже другой, большей вязкостью η4, зависящей от формы и концентрации частиц. Для случая малых концентраций частиц С справедлива формула:

η΄=η(1+KC) (2),

где К - геометрический фактор - коэффициент, зависящий от геометрии частиц (их формы, размеров). Для сферических частиц К вычисляется по формуле: К=2,5(4/3πR3)

Для эллипсоидов К увеличивается и определяется значениями его полуосей и их соотношениями. Если структура частиц изменится (например, при изменении условий течения), то и коэффициент К, а следовательно, и вязкость такой суспензии η΄ также изменится. Подобная суспензия представляет собой неньютоновскую жидкость. Увеличение вязкости всей системы связано с тем, что работа внешней силы при течении суспензий затрачивается не только на преодоление истинной (неньютоновской) вязкости, обусловленной межмолекулярным взаимодействием в жидкости, но и на преодоление взаимодействия между ней и структурными элементами.

Кровь — неньютоновская жидкость. В наибольшей степени это связано с тем, что она обладает внутренней структурой, представляя собой суспензию форменных элементов в растворе - плазме. Плазма - практически ньютоновская жидкость. Поскольку 93 % форменных элементов составляют эритроциты, то при упрощенном рассмотрении кровь — это суспензия эритроцитов в физиологическом растворе. Характерным свойством эритроцитов является тенденция к образованию агрегатов. Если нанести мазок крови на предметный столик микроскопа, то можно видеть, как эритроциты "склеиваются" друг с другом, образуя агрегаты, которые получили название монетных столбиков. Условия образования агрегатов различны в крупных и мелких сосудах. Это связано в первую очередь с соотношением размеров сосуда, агрегата и эритроцита (характерные размеры: dэр=8мкм, dагр=10 dэр)

Здесь возможны варианты:

1. Крупные сосуды (аорта, артерии): dсос > dагр, dсос > dэр.

а) Эритроциты собираются в агрегаты - «монетные столбики». Градиент dV/dZ небольшой, этом случае вязкость крови η = 0,005 Па • с.

2. Мелкие сосуды (мелкие артерии, артериолы): dсос ≈ dагр, dсос ≈ (5-20)dэр.

В них градиент dV/dZ значительно увеличивается и агрегаты распадаются на отдельные эритроциты, тем самым уменьшая вязкость системы. Для этих сосудов, чем меньше диаметр просвета, тем меньше вязкость крови. В сосудах диаметром около 5dэp вязкость крови составляет примерно 2/3 вязкости крови в крупных сосудах.

3. Микрососуды (капилляры):, dсос < dэр.

В живом сосуде эритроциты легко деформируются, становясь похожими на купол, и проходят, не разрушаясь, через капилляры даже диаметром 3 мкм. В результате поверхность соприкосновения эритроцитов со стенкой капилляра увеличивается по сравнению с недеформированным эритроцитом, способствуя обменным процессам.

Если предположить, что в случаях 1 и 2 эритроциты не деформируются, то для качественного описания изменения вязкости системы можно применить формулу (2), в которой можно учесть различие геометрического фактора для системы из агрегатов (Кагр) и для системы отдельных эритроцитов (Кэр): Кагр ≠ Кэр, обусловливающее различие вязкости крови в крупных и мелких сосудах.

Для описания процессов в микрососудах формула (2) не применима, так как в этом случае не выполняются допущения об однородности среды и твердости частиц.

Таким образом, внутренняя структура крови, а следовательно, и ее вязкость, оказывается неодинаковой вдоль кровеносного русла в зависимости от условий течения. Кровь является неньютоновской жидкостью. Зависимость силы вязкости от градиента скорости для течения крови по сосудам не подчиняется формуле Ньютона (1) и является нелинейной.

Вязкость, характерная для течения крови в крупных сосудах: в норме ηкр = (4,2 - 6) • ηв; при анемии ηан= (2 - 3) • ηв; при полицитемии ηпол=(15-20) • ηв. Вязкость плазмы ηпл = 1,2 ηэр. Вязкость воды ηв = 0,01 Пуаз (1 Пуаз = 0,1 Па • с).

Как и у любой жидкости, вязкость крови возрастает при снижении температуры. Например, при уменьшении температуры с 37° до 17° вязкость крови возрастает на 10 %.

Режимы течения крови. Режимы течения жидкости разделяют на ламинарное и турбулентное. Ламинарное течение — это упорядоченное течение жидкости, при котором она перемещается как бы слоями, параллельными направлению течения (рис. 9.2, а). Для ламинарного течения характерны гладкие квазипараллельные траектории. При ламинарном течении скорость в сечении трубы изменяется по параболическому закону:

,

где R - радиус трубы, Z - расстояние от оси, V0 - осевая (максимальная) скорость течения.

С увеличением скорости движения ламинарное течение переходит в турбулентное течение, при котором происходит интенсивное перемешивание между слоями жидкости, в потоке возникают многочисленные вихри различных размеров. Частицы совершают хаотические движения по сложным траекториям. Для турбулентного течения характерно чрезвычайно нерегулярное, беспорядочное изменение скорости со временем в каждой точке потока. Можно ввести понятие об осредненной скорости движения, получающейся в результате усреднения по большим промежуткам времени истинной скорости в каждой точке пространства. При этом существенно изменяются свойства течения, в частности, структура потока, профиль скоростей, закон сопротивления. Профиль осредненной скорости турбулентного течения в трубах отличается от параболического профиля ламинарного течения более быстрым возрастанием скорости у стенок и меньшей кривизной в центральной части течения (рис. 9.2, б). За исключением тонкого слоя около стенки, профиль скорости описывается логарифмическим законом. Режим течения жидкости характеризуется числом Рейнольдса Re. Для течения жидкости в круглой трубе:

,

где V - скорость течения, средняя по поперечному сечению, R -радиус трубы.

Рис. 9.2.Профиль осредненных скоростей при ламинарном (а) и турбулентном (б) течениях

Когда значение Re меньше критического ReK ≈ 2300, имеет место ламинарное течение жидкости, если Re > ReK, то течение становится турбулентным. Как правило, движение крови по сосудам является ламинарным. Однако в ряде случаев возможно возникновение турбулентности. Турбулентное движение крови в аорте может быть вызвано прежде всего турбулентностью кровотока у входа в нее: вихри потока уже изначально существуют, когда кровь выталкивается из желудочка в аорту, что хорошо наблюдается при доплер-кардиографии. У мест разветвления сосудов, а также при возрастании скорости кровотока (например, при мышечной работе) течение может стать турбулентным и в артериях. Турбулентное течение может возникнуть в сосуде в области его локального сужения, например, при образовании тромба.

Турбулентное течение связано с допонительной затратой энергии при движении жидкости, поэтому в кровеносной системе это может привести к дополнительной нагрузке на сердце. Шум, возникающий при турбулентном течении крови, может быть использован для диагностики заболеваний. При поражении клапанов сердца возникают так называемые сердечные шумы, вызванные турбулентным движением крови.





Дата публикования: 2014-11-04; Прочитано: 2378 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...