Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Уравнение Хилла. Мощность одиночного сокращения



Зависимость скорости укорочения от нагрузки Р является важнейшей при изучении работы мышцы, так как позволяет выявить закономерности мышечного сокращения и его энергетики. Она была подробно изучена при разных режимах сокращения Хиллом. Им же было предложено эмпирическое выражение: (1),

которое называется уравнением Хилла и является основным характеристическим уравнением механики мышечного сокращения. Р0 - максимальное изометрическое напряжение, развиваемое мышцей, или максимальный груз, удерживаемый мышцей без ее удлинения; b - константа, имеющая размерность скорости, а - константа, имеющая размерность силы.

Из уравнения (1) следует, что максимальная скорость развивается при Р = 0:

Vmax=P0

При Р = Р0 получаем V = 0, то есть укорочение не происходит. Работа А, производимая мышцей при одиночном укорочении на величину ∆l равна:

А = P∆l

Эта зависимость, очевидно, нелинейная, так как V = f(P). Но на ранней фазе сокращения можно пренебречь этой нелинейностью и считать V = const. Тогда ∆l=V∆t, а развиваемая мышцей мощность W = имеет вид: W = PV.

Получим зависимость мощности от развиваемой силы Р:

.

Мощность равна 0 при Р = Р0, Р =0 и достигает максимального значения при оптимальной величине нагрузки Ропт= , то есть когда Р = 0,31 Р0.

Эффективность работы мышцы при сокращении может быть определена как отношение совершенной работы к затраченной энергии ∆Е:

Это используют, например, спортсмены-велогонщики: при переходе с равнины на горный участок. Нагрузка на мышцы возрастает и спортсмен переключает скорость на низшую передачу, тем самым уменьшая Р, приближая ее к Ропт.

Практически эффективность может достигать значений 40 - 60 % для разных типов мышц;. Самая высокая эффективность наблюдается у мышц черепахи, достигающая 75 - 80 %.





Дата публикования: 2014-11-04; Прочитано: 1624 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...