![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
1.Знайти похідні функцій:
а) y =ln
; б) y =
; в) y =(tg2 x)ln x ;
г)
; д)
.
► а) y =ln
.
Користуючись властивостями логарифмів, перетворимо праву частину:
y =ln
=
.
Застосовуючи правила диференціювання, маємо:
y '=
.
б) y =
.
Прологарифмуємо дану функцію, застосовуючи властивості логарифмів:
ln y =
.
Продиференціюємо по х обидві частини отриманої рівності, вважаючи
складеною функцією від змінної х.
(ln y)′ =
.
Або
;
;
.
в) y =(tg2 x)ln х .
Прологарифмуємо функцію:
ln y =ln x ×lntg2 x.
Знайдемо похідну від лівої і правої частини останньої рівності по х.
(ln y)′=(ln x)′×lntg2 x +ln x (lntg2 x)′.
Звідки
.
Далі
y ′= y
).
Остаточно маємо:
y ′=(tg2 x)lnx
).
г)
.
У даному випадку залежність між аргументом х та функцією у задана рівнянням, яке не розв’язане відносно функції у. Щоб знайти похідну
, необхідно продиференціювати по х обидві частини заданого рівняння, вважаючи при цьому змінну у функцією від х, і потім отримане рівняння розв’язати відносно шуканої похідної
.
Маємо:
.
З отриманої рівності, що зв’язує х, у та
, знаходимо похідну
:
,
,
Звідки
.
д) 
Залежність між змінними х та у задано параметричними рівняннями. Щоб знайти шукану похідну
, знаходимо попередні диференціали
і
і потім знаходимо відношення цих диференціалів
,
,
. ◄
2. За допомогою диференціала обчислити наближене значення
.
► Розглянемо функцію
. Покладемо
,
і застосуємо формулу
.
У нашому випадку
.
Отже, маємо
. ◄
3. Дослідити функцію y = x 4 - 8 x 2 + 16 методами диференційного числення та побудувати її графік.
►Дослідження функції та побудову графіка можна здійснити за наступною схемою:
1) знайти область визначення функції;
2) дослідити функцію на парність або непарність;
3) знайти точки перетину графіка функції з осями координат;
4) дослідити функцію на неперервність, знайти точки роз-риву;
5) знайти асимптоти графіка функції;
6) знайти інтервали монотонності та точки екстремуму;
7) знайти інтервали опуклості, угнутості та точки перегину;
8) побудувати графік функції, користуючись результатами дослідження.
1.Дана функція є многочленом, тому вона визначена (існує) та неперервна на всій дійсній вісі.
2. Дана функція є парною, тому що
у (- x) = (- x)4 - 8(- x)2 + 16 = x 4 - 8 x + 16 = у (x).
Отже, графік цієї функції є симетричним відносно осі ординат.
3. Точки перетину графіка функції з віссю ОY визначаємо підстановкою у функцію значення х = 0, що дає (0;16); точки перети-ну графіка з віссю ОX знаходимо, прийнявши у =0, з рівняння x 4-8 x 2+16=0, корені якого x 1,2 =-2 та x 3,4 =2 є абсцисами точок (-2;0) та (2, 0). Але в цих точках графік не перетинає, а лише торкається осі ОX, тому що кожне з чисел –2 і 2 є подвійним коренем даної функції, в чому легко переконатись, записавши її у вигляді: y = (x +2)2 (x -2)2.
4. Фукція є непервною.
5. Графік функції вертикальних та похилих асимптот не має.
6. Знайдемо інтервали монотонності функції та точки екстремуму. Перша похідна:
y ′ = 4 x 3-16 x = 4 x (x 2-4) = 4 x (x -2)(x +2)
дорівнює нулю при x 1 = -2; x 2 = 0; x 3 = 2.
Розіб’ємо всю числову вісь на чотири інтервали:
.
Склавши таблицю, визначимо знак похідної на кожному з цих інтервалів та характер поведінки функції.
| x |
| -2 | -2,0) | (0,2) | (2, )
| ||
| y′ | - | + | - | + | |||
| y | спадає | min | зростає | max | спадає | min | зростає |
Отже, при x = -2 та x = 2 функція має мінімум, а при x = 0 – максимум, причому
у (-2) = у (2) = 0; у (0) = 16.
5. Знайдемо інтервали опуклості, угнутості та точки перегину графіка функції. Друга похідна
y ′′=(4 x 3-16 x)′=12 x 2-16=12
.
Вона має два корені, які поділяють числову вісь на проміжки:

Складемо таблицю, визначивши знак другої похідної на кожному з цих проміжків, знайдемо інтервали опуклості, угнутості та точки перегину.
| x |
|
|
|
|
|
| y ′′ | + | - | + | ||
| y | угнута | перегин | опукла | перегин | угнута |
Отже, при
та при
маємо точки перегину, причому
у (
; у
.
На основі отриманих даних будуємо графік функції y (рис. 4).

Рис. 4 ◄
4. Дослідити функцію
методами диференційного числення та побудувати її графік.
►1. Задана функція існує при всіх значеннях аргументу, крім х =0. Область визначення складається з двох інтервалів (-¥, 0) та (0, ¥).
2. Функція не є парною або непарною.
3. З віссю О У графік функції не перетинається. Точки перетину графіка функції з віссю О Х:
; х = 1.
Відзначимо, що y ³ 0 для всіх значень x.
4. Функція має нескінченний розрив при х = 0, причому
;
.
При всіх інших значеннях аргументу дана функція неперервна.
5. Оскільки х =0 – точка розриву (
), то х =0 – рівняння вертикальної асимптоти. Для визначення рівняння похилої асимптоти y = kx + b скористуємося відомими формулами
i
.
Маємо
=0;
=1.
Отже, пряма y=1 є горизонтальною асимптотою графіка функції.
6. Знайдемо інтервали монотонності та точки екстремуму функції.
Перша похідна
y ′=
.
Неважко бачити, що перша похідна дорівнює нулю при х =1 і обертається в нескінченність при х =0. Але при х =0 функція невизначена, отже ця точка не підлягає дослідженню. Розіб’ємо всю числову вісь на три інтервали:
. Склавши таблицю, визначимо знак похідної на кожному з цих інтервалів та точки екстремуму.
| x | (-¥, 0) | (0,1) |
| ||
| y′ | + | не існує | - | + | |
| y | зростає | не існує | спадає | min | зростає |
Отже, при x = 1 функція має мінімум, y min= 0.
7. Знайдемо інтервали опуклості, угнутості та точки перегину графіка функції. Друга похідна
y ′′=
.
З одержаного виразу видно, що друга похідна дорівнює нулю при x =
і обертається в нескінченність при x =0. Оскільки при x =0 функція не існує, то ця точка не підлягає дослідженню. Розіб’ємо область існування функції на інтервали:
; (0,
); (
,
).
Склавши таблицю, визначимо знак другої похідної на кожному з цих інтервалів та точки перегину.
| x | (-¥, 0) | (0, )
|
| ( , )
| |
| y ′′ | + | не існує | + | - | |
| y | угнута | не існує | угнута | перегин | опукла |
Отже, при x =
маємо точку перегину:
y (
)=(1-
)2=
.
Таким чином, P(
,
) - точка перегину.
8. На основі отриманих даних будуємо графік функції (Рис. 5).

(Рис. 5) ◄
5. Дослідити функцію
методами диференціального числення та побудувати її графік.
► 1) Область визначення функції
, тому що квадратний тричлен, що знаходиться під знаком логарифма завжди приймає додатні значення, тобто:
.
2) Функція не є парною або непарною, тому що
.
3) Точки перетину графіка функції з осями координат:
;
.
4) Функція є неперервною.
5) Вертикальних асимптот графік функції не має. Рівняння похилих асимптот шукаємо у вигляді
, де
.
Відмітимо, що при знаходженні границі двічі було застосовано правило Лопіталя.
.
Отже, графік функції асимптот не має.
6) Визначимо інтервали монотонності та точки екстремуму. Знаходимо першу похідну
.
Для знаходження критичних точок першого роду розв’яжемо рівняння
, тобто
,
, звідки
- критична точка першого роду.
Критична точка
поділяє область визначення функції на два інтервали
і
. Очевидно, що
при
функція спадає;
при
функція зростає;
при
функція має екстремум (мінімум);
.
7) Визначимо інтервали опуклості, угнутості, точки перетину.
.
Для знаходження критичних точок другого роду розв’яжемо рівняння
, тобто
,
, звідки
,
- критичні точки другого роду, які поділяють область визначення функції на інтервалі, що вказані у наведеній нижче таблиці.
| х |
| (2; 4) | (4; ¥) | ||
Знак
| - | + | - | ||
| Поведінка графіка функції | опуклий
| перегин | угнутий
| перегин | опуклий
|
Отже, графік функції має дві точки перегину
,
.
На основі дослідження поступово будуємо графік функції
, який наведено на рисунку

Дата публикования: 2014-11-04; Прочитано: 4817 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
