![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Рассмотрим систему материальных точек, каждая из которых может перемещаться, оставаясь в одной из плоскостей, проходящих через ось Z (рис. 4.15). Все плоскости могут вращаться вокруг оси Z с угловой скоростью . Тангенциальная составляющая скорости i -ой точки может быть записана в виде:
.
Тогда, учитывая, что
ОПРЕДЕЛЕНИЕ: моментом импульса относительно оси Z называется составляющая
по этой оси момента импульса
относительно точки «О», лежащей на оси (рис. 4.16):
, можно показать, что
, где
– составляющая радиус-вектора
, перпендикулярная оси Z;
– составляющая вектора
, перпендикулярная к плоскости, проходящей через ось Z и точку «m».
Подставив значение для в формулу для
получим выражение для момента импульса точки относительно оси Z:
.
Это можно записать, воспользовавшись свойством двойного векторного произведения и учтя, что векторы и
взаимно перпендикулярны.
Просуммировав это выражение по всем точкам и вынося общий множитель за знак суммы (S), найдем для момента импульса системы относительно оси Z следующее выражение:
,
где – момент инерции системы материальных точек относительно оси Z.
Тогда . Учитывая, что
, получаем
. (4.3)
Это основное уравнение динамики вращательного движения. По форме оно сходно с уравнением II-закона Ньютона: .
Абсолютно твердое тело можно рассматривать как систему материальных точек с неизменными расстояниями между ними. Для такой системы момент инерции есть величина постоянная относительно фиксированной оси. Следовательно, для абсолютно твердого тела основное уравнение динамики вращательного движения примет вид:
, (4.4)
где – угловое ускорение тела;
– результирующий момент внешних сил, действующих на тело.
Сопоставив уравнения динамики вращательного движения с уравнениями динамики поступательного движения, легко заметить, что при вращательном движении роль силы играет момент силы, роль массы – момент инерции и т.д. (см. таблицу).
Поступательное движение | Вращательное движение |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
m – масса | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Все приведенные выше формулы справедливы для случая, если ось вращения тела неподвижна.
Дата публикования: 2014-11-04; Прочитано: 953 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!