Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Закон сохранения энергии



Без нарушения общности рассмотрим систему, состоящую из двух частиц массами m1 и m2. Пусть частицы взаимодействуют друг с другом с силами и , модули которых зависят от расстояния R12 между частицами. Установлено, что такие силы являются консервативными, т.е. работа, совершаемая такими силами над частицами, определяется начальной и конечной конфигурациями системы. Пусть также, кроме внутренних сил на первую частицу действует внешняя консервативная сила и внешняя неконсервативная сила . Аналогично для второй частицы. Тогда уравнения движения частиц можно записать в виде:

Умножим каждое уравнение на и сложим полученные выражения.

1. Распишем первый член в правой части.

Работа внутренних сил равна . Для замкнутой системы , а , где и – радиус-векторы частиц.

Тогда

.

Учитывая, что силы и имеют величину, зависящую только от расстояния и направлены вдоль соединяющей их прямой (это справедливо, например, для сил кулоновского или гравитационного взаимодействий), любую из этих сил можно представить в виде, например, , где f(R 12 ) – некоторая функция R 12, – орт вектора .

Следовательно, .

Скалярное произведение равно приращению dR 12 расстояния между частицами, тогда .

Выражение есть приращение некоторой функции . Следовательно,

.

Функция представляет потенциальную энергию взаимодействия.

Работа внутренних сил будет равна

,

т.е. не зависит от пути, по которому перемещаются частицы, а определяется начальной и конечной конфигурациями системы. Т.е. силы взаимодействия вида являются консервативными.

Итак, работа внутренних сил равна убыли потенциальной энергии взаимодействия

2. Второй член представляет работу внешних сил и равен убыли потенциальной энергии системы во внешнем поле консервативных сил

3. Последний член представляет работу неконсервативных внешних сил .

После этих замечаний можно записать

Величина

T + Uвз. + Uвн. = E (3.13)

– называется полной механической энергией системы. Если внешние неконсервативные силы отсутствуют, т.е. , то

Е=const – закон сохранения механической энергии.

ОПРЕДЕЛЕНИЕ: полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной.

Для замкнутой системы, т.е. системы, на тела которой не действуют никакие внешние силы, закон сохранения примет вид:

E = T + Uвз. = const

Если в замкнутой системе, кроме консервативных сил действуют неконсервативные силы, например, силы трения, то полная механическая энергия системы не сохраняется. Рассматривая консервативные силы как внешние, получим

или после интегрирования .

Как правило, силы трения совершают отрицательную работу. Поэтому наличие сил трения в замкнутой системе приводит к уменьшению ее полной механической энергии со временем. Таким образом, если в системе действуют неконсервативные силы, то
изменение полной энергии будет равно работе всех внешних сил, действующих на эту систему.

Анализ закона сохранения показывает, что полная энергия, оставаясь в консервативной системе величиной постоянной, может переходить из одних видов в другие.

При действии неконсервативных сил возможен переход механической энергии в другие немеханические виды энергии. В этом случае справедлив более общий закон сохранения:

ОПРЕДЕЛЕНИЕ: в изолированной от любых внешних воздействий системе остается постоянной сумма всех видов энергии (включая и немеханические).

К этому добавим, что в природе и технике постоянно имеют место превращения энергии из одних видов в другие. Проиллюстрируем это таблицей.

Процесс или прибор Превращение энергии
из вида в вид
Электрогенератор механическая электрическая
Гальванический элемент химическая электрическая
Электродвигатель электрическая механическая
Зарядка аккумулятора электрическая химическая
Фотосинтез электромагнитная химическая
Фотоэффект электромагнитная электрическая
Ядерный реактор ядерная механическая электромагнитная и др.

В таблице не отражено, что при любом превращении часть энергии превращается в теплоту.

Для графического изображения закона сохранения энергии рассмотрим случай, когда тело бросаем вверх.

Если не учитывать силу сопротивления воздуха Fсопр., то систему «тело-Земля» можно рассматривать, как изолированную и консервативную, для которой

E = Eк. + Up. = const

Из графика (рис. 3.10) видно, что по мере поднятия тела над поверхностью Земли его потенциальная энергия возрастает от величины Up(h1) до Up(h2), но одновременно с этим точно на такую же величину уменьшается кинетическая энергия системы Eк., а полная энергия тела остается величиной постоянной, что соответствует линии BA || h.

Очевидно:

1. При h=0 имеем Up=0, а E=Eк., что соответствует линии ОВ;

2. При h = max имеем Up = max (Eк. = 0), а E = Up, что соответствует линии AC.

САМОСТОЯТЕЛЬНО:

Упругий и неупругий центральный удар шаров;

Условия равновесия механической системы.





Дата публикования: 2014-11-04; Прочитано: 838 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...