![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Найти решение линейного дифференциального уравнения
,
, (6.1)
удовлетворяющего краевым условиям:
(6.2)
Теорема. Пусть . Тогда существует единственное решение поставленной задачи.
Решение будем отыскивать методом конечных разностей.
Основные этапы метода конечных разностей:
1. Область непрерывного изменения аргумента заменяется дискретным множеством точек, называемых узлами:
.
2. Искомая функция непрерывного аргумента приближенно заменяется функцией дискретного аргумента на заданной сетке, т.е.
. Функция
называется сеточной.
3. Исходное дифференциальное уравнение заменяется алгебраическим разностным уравнением относительно сеточной функции. Такая замена называется разностной аппроксимацией.
Таким образом, решение дифференциального уравнения сводится к отысканию значений сеточной функции в узлах сетки, которые находятся из решения алгебраических уравнений.
Дата публикования: 2015-11-01; Прочитано: 214 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!