Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Трение на наклонной плоскости



Рассмотрим случай, когда на тело, находящееся на наклонной плоскости с углом l к горизонту, действует одна сила, перпендикулярная основанию плоскости (рис 16.5), например сила веса.

Рис. 16.5

В этом случае возможно движение только вниз при соблюдении условия . При под действием силы, перпендикулярной основанию плоскости, движение, независимо от величины силы, не может ни возникнуть, ни продолжаться без замедления.

Плоскость с углом наклона, меньшим угла трения, называется самотормозящей.

Рассмотрим случай, когда на тело, находящееся на плоскости, наклоненной под углом l к горизонту, действуют две силы, одна из которых перпендикулярна основанию плоскости, а другая параллельна. В этом случае возможно движение тела вверх, или вниз по наклонной плоскости.

1. Движение тела вверх по наклонной плоскости (рис. 16.6).

Рис. 16.6

В этом случае параллельная основанию плоскости сила Р должна быть направлена вправо. Для возможности движения вверх по плоскости необходимо, чтобы равнодействующая R сил P и Q составляла угол b с перпендикуляром к плоскости не меньше угла трения j, т.е. необходимо выполнение условия

.

Из построения следует

.

Из приведенных выше неравенства и равенства вытекает следующее условие для возможности движения тела вверх по наклонной плоскости:

.

2. Движение тела вниз по наклонной плоскости (рис. 16.7).

В этом случае из построения следует

и, следовательно, движения тела вниз по наклонной плоскости оказывается при возможным при соблюдении условия

.

Рис. 16.7

На рис. 16.7 сила Р направлена вправо и является силой, противодействующей движению. Необходимость в силе Р, направленной влево (рис. 16.8), для движения тела вниз будет только в том случае, если под действием только одной силы Q движение не будет происходить (самотормозящая плоскость).

Из построения (рис. 16.8) получаем

При необходимая для движения сила Р должна удовлетворять условию

.


Рис. 16.8






Дата публикования: 2015-11-01; Прочитано: 496 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...