Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Заказать написание работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Координационное число и методика его вычисления в различных структурах (состоящих из атомов одного сорта, из различных атомов)



В сложных ячейках материальные частицы уложены более плотно, чем в примитивных, более полно заполняют объем ячейки, больше связаны друг с другом. Для характеристики этого вводят понятие о координационном числе.

Под координационным числом данного атома понимают число ближайших соседних атомов. Если речь идет о координационном числе иона, то подразумевается число ближайших к нему ионов противоположного знака. Чем больше координационное число, тем с большим числом атомов или ионов связан данный, тем больше места занято частицами, тем компактнее решетка.

5. Какие пространственные решетки встречаются среди металлов?

Наиболее распространенные среди металлов пространственные решетки относительно просты. Они большей частью совпадают с трансляционными решетками Браве: кубической объемноцентрированной и гранецентрированной. В узлах этих решеток располагаются атомы металлов. В решетке объемноцентрированного куба (ОЦК - решетки) каждый атом окружен восемью ближайшими соседями, и координационное число КЧ = 8. Решетку ОЦК имеют металлы: a-Fe, Li, Na, K, V, Cr, Ta, W, Mo, Nb и др.

В решетке гранецентрированного куба (ГЦК - решетки) КЧ = 12: любой атом, расположенный в вершине ячейки имеет двенадцать ближайших соседей, которыми является атомы, находящиеся в центрах граней. Решетку ГЦК имеют металлы: Al, Ni, Cu, Pd, Ag, Ir, Pt, Pb и др.

Наряду с этими двумя, среди металлов (Be, Mg, Sc, a-Ti, a-Co, Zn, Y, Zr, Re, Os, Tl, Cd и др.) встречается еще гексагональная компактная. Эта решетка не является трансляционной решеткой Браве, так как простыми трансляциями ее нельзя описать.





Дата публикования: 2015-10-09; Прочитано: 1066 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2022 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...