![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Известно общее уравнение кривой 2-го порядка a11x2+2a12xy+a22y2+a13x+a23y+a33=0
Известны виды возможных кривых, если кривые заданы каноническими уравнениями. Рассмотрим более общий случай уравнения a11x2+2a12xy+a22y2+a13x+a23y+a33=0
Пусть a12=0. Тогда в общем уравнении отсутствует произведение текущих координат. Можно выделить полные квадраты по переменным. Тогда уравнение примет несколько модифицированный вид, но близкий к каноническому. Построить кривую будет возможно, если использовать известный принцип сдвига кривой вдоль осей координат.
Если же a12 не равен нулю, тогда механизм упрощения уравнения кривой несколько усложняется и может быть выполнен в такой последовательности.
1-й шаг – по виду старших слагаемых выписываем матрицу квадратичной формы переменных (см. раздел 1.12);
2-й шаг – составляем и решаем характеристическое уравнение для поиска собственных значений матрицы квадратичной формы; собственные значения всегда действительные числа и они укажут нам ти кривой второго порядка (см. раздел 1.11); при этом квадратичная форма принимает канонический вид – в ней не будет произведения текущих координат; следует заметить, что порядок собственных значений не влияет на тип кривой;
3-й шаг – для известных собственных значаний находим собственные векторы; нормируем их и получаем новый ортонормированный базис и матрицу поворота плоскости для перехода к новому базису(см. раздел 1.9);
4-й шаг – строим старый декартов базис и в нем новый декартов базис из нормированных собственных векторов матрицы квадратичной формы;
5-й шаг – выписываем формулы преобразования координат для перехода к новому базису и преобразуем с их помощью линейные слагаемые в уравнении кривой;
6-й шаг – теперь в уравнении кривой отсутствует произведение текущих новых координат и остается выделить полные квадраты по переменным и построить кривую в новой системе координат.
Дата публикования: 2015-10-09; Прочитано: 205 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!