Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Асимптоты графика функции. Горизонтальные, вертикальные и наклонные асимптоты. Способы нахождения асимптот



Асимптота – это прямая, к которой бесконечно близко приближается график функции, при этом он должен бесконечно далеко удаляться от начала координат.

На плоскости асимптоты классифицируют по их естественному расположению:

1) Вертикальные асимптоты, которые задаются уравнением вида , где «альфа» – действительное число. Популярная представительница определяет саму ось ординат, вспомним,н-р, гиперболу . Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика. Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции. Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова – любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат (см. Графики и свойства элементарных функций).

Из вышесказанного также следует очевидный факт: если функция непрерывна на , то вертикальные асимптоты отсутствуют.

Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом. Иногда отдельной группой выделяют частный случай –горизонтальные асимптоты. Например, та же гипербола с асимптотой. Наклонные асимптоты графика функции

Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если функция стремится к «плюс бесконечности» или/и «минус бесконечности». Поэтому график функции не может иметь больше 2-х наклонных асимптот. Например, график экспоненциальной функции обладает единственной горизонтальной асимптотой при , а график арктангенса при – двумя такими асимптотами, причём различными.

Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью . Например, …правильно догадались: .

Общее практическое правило:

Если существуют два конечных предела , то прямая является наклонной асимптотой графика функции при . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.

Нахождение асимптот графика функции основано на следующих утверждениях.

Теорема 1. Пусть функция определена хотя бы в некоторой полуокрестности точки и хотя бы один из ее односторонних пределов в этой точке бесконечен, т.е. равен или . Тогда прямая является вертикальной асимптотой графика функции.

Таким образом, вертикальные асимптоты графика функции следует искать в точках разрыва функции или на концах ее области определения (если это конечные числа).

Теорема 2. Пусть функция определена при значениях аргумента, достаточно больших по абсолютной величине, и существует конечный предел функции . Тогда прямая есть горизонтальная асимптота графика функции.

Может случиться, что , а , причем и - конечные числа, тогда график имеет две различные горизонтальные асимптоты: левостороннюю и правостороннюю. Если же существует лишь один из конечных пределов или , то график имеет либо одну левостороннюю, либо одну правостороннюю горизонтальную асимптоту.

Теорема 3. Пусть функция определена при значениях аргумента, достаточно больших по абсолютной величине, и существуют конечные пределы и . Тогда прямая является наклонной асимптотой графика функции .

Заметим, что если хотя бы один из указанных пределов бесконечен, то наклонной асимптоты нет.

Наклонная асимптота так же, как и горизонтальная, может быть односторонней.

Преобразование графиков. Сдвиг по горизонтали и вертикали. Растяжение по горизонтали и вертикали. Отражение относительно вертикальной и горизонтальной оси (все случаи с примером на графике).

График функции y=f(x)+B получается параллельным переносом графика функции y=f(x) в положительном направлении вдоль оси Оу на расстояние В, если В>0 и в отрицательном направлении вдоль оси Оу, если B<0.

График функции y=f(x+b) получается параллельным переносом графика функции y=f(x) в положительном направлении вдоль оси Оx на расстояние b, если b<0 и в отрицательном направлении вдоль оси Оx, если b>0.

Отображение

График функции y=-f(x) получается симметричным отображением графика y=f(x) относительно оси Ох.

График функции y=f(-x) получается симметричным отображением графика y=f(x) относительно оси Оу.

Деформация (растяжение и сжатие) графика

График функции y=Af(x), получается растяжением графика y=f(x) вдоль оси Оу от оси Ох в A раз при A>1 или сжатием вдоль оси Оу к оси Ох в 1/А раз при A<1.

Отражение

График функции получается из графика функции y=f(x) следующим образом: часть графика функции y=f(x), лежащая над осью Ох и на оси, остается без изменений, а часть графика, лежащая под осью Ох, отражается симметрично относительно оси Ох на верхнюю полуплоскость.

График функции получается из графика функции y=f(x) следующим образом: часть графика функции y=f(x), соответствующая неотрицательным значениям аргумента , остается без изменений, а отрицательным значениям аргумента будет соответствовать график, полученный путем симметричного относительно оси Оy отображения части графика, оставленной без изменений.





Дата публикования: 2015-10-09; Прочитано: 2125 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...