Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
План лекції
1. групове кодування (RLE),
2. алгоритм Лемпела-Зіва-Велча (LZW),
3. кодування CCITT (Хафмена),
4. технологія JPEG,
5. алгоритм ART,
6. алгоритми фрактального стискання зображень.
Стискання здійснюється з метою зменшення фізичного розміру блоку інформації. Стискання інформації здійснює програма-компресор, а відновлення - програма-декомпресор.
Стискання растрових і векторних даних здійснюється по-різному. В растрових файлах стискаються тільки дані зображення, а заголовок і решта даних (таблиця кольорів, кінцівка і т.п.) завжди залишаються незтисненими (вони, як правило, займають незначну частину растрового файла). Векторні файли, в яких зберігається математичний опис зображення, а не самі дані, як правило, не мають "рідної" форми стискання. Це викликано тим, що в векторному форматі дані вже представлені в компактній формі і стискання дає дуже незначний ефект. Окрім цього звичайно векторні дані читаються з незначною швидкістю і при додаванні розпаковування цей процес може стати ще більш повільним. Якщо векторний файл все ж стискається, то, як правило, стискаються всі дані, включаючи заголовок.
Більшість алгоритмів стискання забезпечують кодування без втрат, коли дані при розпаковуванні повністю відновлюються. Методи кодування з втратами передбачають відкидання деяких даних зображення для досягнення кращої міри стискання, ніж за методами без втрат. При цьому важливо, щоб втрата деякої частини даних була прийнятною або навіть доцільною.
Найбільш поширеними алгоритмами стискання даних є:
· групове кодування (RLE),
· алгоритм Лемпела-Зіва-Велча (LZW),
· кодування CCITT (Хафмена),
· технологія JPEG,
· алгоритм ART,
· алгоритми фрактального стискання зображень.
1. Алгоритм RLE зменшує фізичний розмір рядків символів, що повторюються. Такі рядки називають групами і кодують двома байтами, перший з яких визначає кількість символів в групі, а другий містить значення символу. Ефективність стискання залежить від типу даних зображення. Краще стискаються чорно-білі зображення, які містять багато білого кольору, а гірше - фотореалістичні зображення з великою кількістю кольорів. Алгоритм RLE характеризується простотою і високою швидкодією. Варіанти групового кодування розрізняються напрямом утворення рядка (вздовж осі X, осі Y та діагоналі). Найчастіше вони стискають без втрат, однак відкидання молодших розрядів в значеннях символу може суттєво збільшити міру стискання складних зображень.
2. Алгоритм LZW базується на словниках. Із даних вхідного потоку він будує словник даних. Зразки даних ідентифікуються в потоці даних і співставляються з записами в словнику. Якщо зразка даних нема в словнику, то на основі цих даних в словник записується кодова фраза, яка має менший розмір, ніж самі дані. Ця ж фраза записується і в вихідний потік стиснених даних. Якщо ж зразок даних зустрічається у вхідному потоці повторно, фраза, що відповідає йому, читається із словника і записується в вихідний потік. Так як кодові фрази мають менший розмір, ніж зразки даних, відбувається стискання. Декодування здійснюється в зворотному порядку. Декомпресор читає код з потоку стиснених даних і, якщо його ще нема в словнику, додає його туди. Потім цей код переводиться в рядок, який він представляє, і записується в вихідний потік незтиснених даних. Перевагою алгоритму LZW перед іншими, які базуються на словниках, є те, що не обов'язково зберігати словник для наступного декодування. Алгоритм LZW є запатентованим і його використання при створенні нових програмних продуктів обмежується ліцензійними угодами.
3. Міжнародний Консультативний комітет з телеграфії і телефонії (CCITT) розробив серію комунікаційних протоколів для факсимільної передачі чорно-білих зображень по телефонних каналах і мережах передачі даних. Ці протоколи офіційно відомі як стандарти Т.4 і Т.6 CCITT, але більш розповсюджена їхня назва - стиск CCITT Group 3 і Group 4 відповідно. Іноді кодування CCITT називають кодуванням за алгоритмом Хафмена. Це простий алгоритм стиску, запропонований Девідом Хафменом у 1952 році. Стандарти Group 3 і Group 4 - це алгоритми стиску, спеціально розроблені для кодування однобітових даних зображення. Алгоритми CCITT не є адаптивними, тобто не настоюються для кодування кожного растра з оптимальною ефективністю. У них використовується фіксована таблиця кодових значень, що були обрані спеціально для представлення документів, які підлягають факсимільній передачі. Перед початком кодування здійснюється частотний аналіз коду документу і виявляється частота повтору кожного з символів. Символи, які частіше зустрічаються, кодуються меншою кількістю розрядів. При використанні кодування за схемою Хафмена треба разом із закодованим текстом передати відповідний алфавіт, але для великих фрагментів надлишковість не може бути значною.
4. JPEG (Joint Photographic Experts Group - об'єднана група експертів по фотографії) є методом стиску, що дозволяє стискати дані багатоградаційних зображень (фотографій, телевізійних заставок, іншої складної графіки) з піксельною глибиною від 6 до 24 біт з задовільною швидкістю й ефективністю. На відміну від інших методів стиску JPEG не є одним алгоритмом. JPEG може налаштовуватися на відтворення дуже маленьких стиснутих зображень поганої якості, але проте придатних для більшості програм, і в той же час дозволяє робити стиснені зображення дуже високої якості, обсяг даних яких набагато менше, ніж в оригінальних незтиснених даних. JPEG, як правило, супроводжується втратами. Схема JPEG заснована на відкиданні інформації, яку важко помітити візуально. Невеликі зміни кольору погано розпізнаються оком людини, а от незначні зміни інтенсивності (світліше чи темніше) - краще. Виходячи з цього, кодування з втратами JPEG прагне до дбайливого поводження з напівтоновою частиною зображення, але більш вільно поводиться з кольором. При цьому анімація, чорно-білі ілюстрації і документи, а також типова векторна графіка, як правило, стискуються погано. В даний час JPEG стали використовувати для стиску "живого" відео, однак стандарт не містить ніяких положень щодо такого застосування. Обсяг стиснутих даних залежить від змісту зображення. Міра стиску зображення з фотографічною якістю може становити від 20:1 до 25:1 без помітної втрати якості. Звичайно ж, настільки високий показник стиску супроводжується відмінністю від оригіналу, але вона настільки незначна, що якість зображення все-таки залишається досить високою. Зображення, що містять великі області одного кольору, стискуються дуже погано. JPEG вводить у такі зображення артефакти (недоліки, вади), особливо помітні на суцільному фоні. Це значно погіршує якість зображень у порівнянні з традиційним методом стиску без втрат.
5. ART - це оригінальний алгоритм стиснення, що був створений і продається фірмою Johnson-Grace. Як і при роботі з алгоритмом JPEG, міра стиску в ART регулюється, а установка високого її значення може викликати втрати даних. Існує і режим кодування без втрат. Фірма Johnson-Grace продає ART як універсальний компресор для online-сервісів, а в перспективі планує адаптувати його для підтримки звуку, анімації і повномасштабного відеозображення. Хоча детальний опис цього алгоритму тримається в таємниці, Johnson-Grace випустила ряд документів описового характеру. Мета алгоритму - аналіз зображення і виявлення ряду його ключових ознак (колір, завади, межі, особливості, що повторюються), яким потім привласнюються пріоритети відповідно до відносної ваги кожної ознаки у вмісті зображення. Для класифікації і призначення пріоритетів ознакам стисненого зображення в програмі використовується нечітка логіка. Повторювані особливості виявляються і зв'язуються в зображенні оригінальним методом, розробленим самою фірмою. Компоненти зображення квантуются, при цьому низкопріоритетні ознаки ігноруються. Як і при використанні алгоритму JPEG, міра втрати інформації підвищується пропорційно росту міри стиску і компенсується певною надлишковістю. ART-зображення можуть бути багаторівневими. Це значить, що їх можна передавати поетапно по модемних лініях з низькою пропускною здатністю. Крім того, алгоритм забезпечує майже миттєве, хоча і низькоякісне, відображення на пристрої виведення клієнта. Потім, по мірі прийому даних і поступової візуалізації, якість зображення підвищується.
6. Фрактальне кодування засноване на тім факті, що всі природні і більшість штучних об'єктів містять надлишкову інформацію у виді однакових, повторюваних малюнків, які називаються фракталами. Процес кодування, що перетворює зображення в сукупність математичних даних, вимагає винятково великого обсягу обчислень. В залежності від роздільної здатності і вмісту вхідних растрових даних, якості зображення, часу стиснення і розміру файлу процес стиснення одного зображення може зайняти від декількох секунд до декількох годин навіть на дуже швидкодіючому комп'ютері. Декодування фрактального зображення - процес набагато більш простий, тому що вся трудомістка робота була виконана при пошуку всіх фракталів під час кодування. В процесі декодування потрібно лише інтерпретувати фрактальні коди, перетворивши їх у растрове зображення. Тому фрактальний метод доцільно використовувати тоді, коли дані зображень безупинно розпаковуються, але ніколи не стискуються. Фрактальний метод забезпечує легкість масштабування зображення без введення артефактів і втрати деталей та невеликий розмір стиснених даних але супроводжується втратами.
Основи роботи з кольором в комп’ютерних графічних редакторах.
План лекції
1. Поняття кольору;
2. Основні кольори:
2.1. Адитивні основні кольори;
2.2. Субтрактивні основні кольори;
3. Колірне коло;
4. Колір в зображеннях:
2.
3.
4.
4.1. Фізичні характеристики світлового потоку;
4.2. Глибина кольору;
5. Моделі кольорів;
2.
3.
4.
5.
5.1. RGB
5.2. CMY
5.3. Lab
5.4. HBS
6. Простір кольорів;
Дата публикования: 2015-09-17; Прочитано: 1847 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!