Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Фазовые состояния углеводородных смесей



Значительно сложнее закономерности фазовых переходов двух- и многокомпонентных систем. С появлением в системе двух и более компонентов в закономерностях фазовых изменений возникают особенности, отличающие их от поведения однокомпонентного газа.

В смеси углеводородов каждый компонент имеет собственные значения упругости насыщенных паров, поэтому процессы конденсации и испарения не будут проходить при конкретных значениях давления и температуры, а в определённом диапазоне значений давления и температуры. Границы диапазона будут тем больше, чем больше разница между критическими значениями давления и температуры индивидуальных компонентов, входящих в систему.

Изотермическое сжатие системы будет приводить к конденсации сначала более тяжелого компонента, затем более легкого. В результате изотермы в двухфазной области имеют наклон (рис. 12, а). С появлением в системе второго компонента большие различия появляются и в диаграммах "давление – температура" (рис. 12, б).

Рис. 12. Диаграммы фазового состояния бинарных систем:

а. - зависимость "давление – удельный объём" для смеси н-С5Н12 н-С7Н16; б. – диаграмма "давление-температура" для смеси C2Н6 – н-С7Н16

Крайние левая и правая кривые соответствуют давлениям насыщенных паров для легкого (слева) и более тяжелого компонента (справа). Между ними расположены фазовые диаграммы смесей.

Для многокомпонентных систем, в силу их неидеальности, возможны существование двух фаз при температурах или давлениях выше критических величин.

Явления существования двух фаз при изотермическом или изобарическом расширении (сжатии) смеси в области выше критических температур и давлений называются ретроградными явлениями или процессами обратного испарения и конденсации. Изотермические ретроградные явления происходят только при температурах выше критической и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и максимальным двухфазным давлением. Такие явления характерны, в основном, для газоконденсатных месторождений, имеющих высокие пластовые температуры и давления.

Рис.13. Различные виды фазовых диаграмм.

1 — кривая точек парообразования; 2 —.кривая точек конденсации.

На рис. 13 показаны фазовые диаграммы в координатах Р - Т (давление — температура) с другими условиями возникновения ретроградных явлений, где нанесены лишь кривые точек конден­сации 2 и кривые точек парообразования 1, ограничивающие двух­фазную область.

Здесь в области BCN возникают процессы обратной изотермической конденсации, а в области ACD — процессы обратного изобарического испарения.

Если критическая область характеризуется диаграммой (рис. 13,б), где критическая точка С существует при давлении и температуре ниже максимальных Р' и Т', лежащих на кривой паро­образования, то изотермическое обратное испарение происходит в области CBN, а изобарическое ретроградное испарение - в области ACND.

Обычно критическая точка находится справа от максимального давления, при котором могут одновременно сосуществовать жидкая и газовая фазы, когда в углеводородной смеси массовая концентрация гептана и более тяжелых фракций высокая, а метана низкая.

Ретроградные явления характеризуются диаграммой вида (рис. 13, в ), когда максимальное давление Р' находится на кривой точек конденсации, а критическое давление — между Р' и Т'. Изотермическая ретроградная конденсация возникает тогда по любой вертикальной линии в области BCDN. В области СBN могут проис­ходить явления обратной изобарической конденсации. Такие диа­граммы характерны для жирных и конденсатных газов.

Изотермические ретроградные явле­ния происходят только при температурах выше критических и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и макси­мальным двухфазным давлением.

Ретроградные процессы испарения и конденсации сопровождаются непрерывным изменением состава и объемного соотношения жидкой и паровой фаз. Например, по рис. 14 соответствующему фазовой диаграмме, приведенной на рис. 13 б можно проследить течений процессов обратного испарения и конденсации. На рис. 14 нанесены дополнительные кривые, характеризующие количество жидкой фазы в системе при различных давлениях и температурах. При прохожде­нии по изотерме (допустим, AM) от точки конденсации до точки паро­образования можно проследить ретроградный процесс. При давлении, соответствующем точке О. молекулы приблизятся друг к другу доста­точно, чтобы силы притяжения начали действовать между тяжелыми молекулами; образуется жидкая фаза, состоя­щая в основном из тяжелых углеводородов. Этот процесс будет происходить до давления рк, при котором притяжение между легкими молекулами, остав­шимися в газе, до этого слабое станет более эффективным из-за большой бли­зости молекул. С этого момента моле­кулы тяжелых углеводородов начинают вновь втягиваться в паровую фазу. При давлении pк,выделяется максимальное количество жидкой фазы и называется давлением максимальной конденсации.

Рис. 14. фазовая диаграмма вблизи критической точки:

1— кривая точек парообразования; 2— кривая точек конденсации.

С дальнейшим ростом давления взаимодействие молекул в жидкости также несколько уменьшается вследствие рас­творения в ней легких углеводородов. Относительная плотность газовой фазы увеличивается, и тяжелые компоненты жидкой фазы начинают все. более и более растворяться в плотной газовой фазе До тех пор, пока не закончится процесс ретроградного испарения. Из сказанного следует, что процесс ретроградного испарения можно упрощенно рассматривать как растворение тяжелых компонентов в плотной паровой фазе подобно тому, как тяжелые фракции нефти растворяются и легком бензине.

Описанные явления обратной конденсации известны в природ­ных условиях — в газовых и газонефтяных месторождениях с высокими пластовыми давлением и температурой. Такие месторождения называются г а з о к о н д е н с а т н ы м и. В состав газов газоконденсатных месторождении в основном входит метан (80—94% по объему). Этан, пропан и бутан содержатся от долей % процента до 4%. На долю пентана и более высококипящих углеводородов в газоконденсатных месторождениях, залегающих на глубине более 1500 м, приходится 1,5—5% (массовая концентрация). Например, на месторождении Зыря (Азербайджан) начальное содержание жидких угле­водородов — конденсата, представляющего собой смесь бензиновых и более тяжелых фракции плотностью 785 кг;м3 и ниже, — соста­вляло 0,28 кг!м3. В составе газов газоконденсатных залежей присутствуют иногда и неуглеводородные газы (N2, С02 и др.).

В газовой шапке газонефтяных месторождений при глубоком залегании пласта может содержаться значительное количество тяжелых компонентов, так как нефть - богатый источник жидких углеводородов, которые при высоком пластовом давлении и темпе­ратуре растворяются в газовой фазе. Лишь иногда, когда в пласте залегает нефть, бедная бензиновыми фракциями, в газовой шапке содержится мало пентана и более высоких углеводородов.

При эксплуатации газоконденсатных месторождений следует обязательно и точно учитывать фазовые превращения, сопровождающие изменение давления и темпе­ратуры смеси. Даже небольшие снижения пластового давления в та­ких месторождениях могут привести к выпадению конденсата из паровой фазы в пласт. Конденсат при этом смочит огромную поверх­ность пористой среды и будет в значительной мере потерян.

Степень насыщения газоконденсатной залежи высококипящими углеводородами (конденсатом) определяется величиной газоконденсатного фактора. По аналогии с газовым фактором (Го) для нефтяных месторождений понятие газоконденсатный фактор (Ко) применяется для конденсатных залежей. Газоконденсатный фактор - представляет собой отношение количества (дебита) газа в м3 к количеству стабильного конденсата в м3. Величина, обратная газоконденсатному фактору, называется выход конденсата.

Нефть и конденсат полученные, непосредственно, на промысле при данных температурах и давлениях, называются сырыми. Нефть и конденсат, прошедшие процессы дегазации (сепарации), стабилизации при стандартных условиях называются стабильными.





Дата публикования: 2015-07-22; Прочитано: 2057 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...