![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Рассмотрим простую числовую дробь вида a/b. Можно воспользоваться основным свойством дроби и умножить числитель и знаменатель на такое число, чтобы внизу получилась степень десятки. Но прежде, чем это делать, прочитайте следующее:
Существуют знаменатели, которые не приводятся к степени десятки. Учитесь распознавать такие дроби, потому что с ними нельзя работать по алгоритму, описанному ниже.
Вот такие дела. Ну и как понять, приводится знаменатель к степени десятки или нет?
Ответ прост: разложите знаменатель на простые множители. Если в разложении присутствуют только множители 2 и 5, это число можно привести к степени десятки. Если найдутся другие числа (3, 7, 11 — что угодно), о степени десятки можно забыть.
Итак, со знаменателем разобрались — теперь рассмотрим весь алгоритм перехода к десятичным дробям:
1. Разложить знаменатель исходной дроби на множители и убедиться, что она вообще представима в виде десятичной. Т.е. проверить, чтобы в разложении присутствовали только множители 2 и 5. Иначе алгоритм не работает;
2. Сосчитать, сколько двоек и пятерок присутствует в разложении (других чисел там уже не будет, помните?). Подобрать такой дополнительный множитель, чтобы количество двоек и пятерок сравнялось.
3. Собственно, умножить числитель и знаменатель исходной дроби на этот множитель — получим искомое представление, т.е. в знаменателе будет стоять степень десятки.
Разумеется, дополнительный множитель тоже будет разлагаться только на двойки и пятерки. При этом, чтобы не усложнять себе жизнь, следует выбирать наименьший такой множитель из всех возможных.
И еще: если в исходной дроби присутствует целая часть, обязательно переведите эту дробь в неправильную — и только затем применяйте описанный алгоритм
Дата публикования: 2015-04-08; Прочитано: 312 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!