Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы волновые свойства частиц. Оно должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как величина │ Ψ │ 2 определяет вероятность пребывания частицы в момент времени в объеме.
Основное уравнение сформулированоЭ. Шредингером: уравнения не выводится, а постулируется.
Уравнение Шредингера имеет вид:
- ΔΨ + U (x, y, z, t)Ψ = iħ , (33.9)
где ħ=h/ (2 π), т —масса частицы, Δ—оператор Лапласа, i — мнимая единица, U (x, y, z, t) — потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t) — искомая волновая функция частицы.
Уравнение (32.9) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (33.9) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состояний — состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U (x, y, z, t) не зависит явно от времени и имеет смысл потенциальной энергии.
∆ Ψ + (E - U)Ψ = 0. (33.10)
Уравнение (33.10) называется уравнением Шредингера для стационарных состояний.
В это уравнение в качестве параметра входит полная энергия Е частицы. Решение уравнения имеет место не при любых значениях параметра Е, а лишь при определенном наборе, характерном для данной задачи. Эти значения энергии называются собственными. Собственные значения Е могут образовывать как непрерывный и дискретный ряд.
33.5. Частица в одномерной прямоугольной «потенциальной яме с бесконечно высокими «стенками»
Свободная частица — частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия частицы U (х) = соnstи ее можно принять равной нулю. Тогда полная энергия частицы совпадает с ее кинетической энергией. Энергия свободной частицы может принимать любые значения, т. е. ее энергетический спектр является непрерывным. Свободная квантовая частица описывается плоской монохроматической волной де Бройля, и все положения свободной частицы в пространстве являются равновероятными.
Проведем качественный анализ решений уравнения Шредингера применительно к свободной частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками» (рис.33.1). Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)
∞, х < 0
U (x) = {0, 0 ≤ х ≤ l }(33.11)
∞, х > 1
где l — ширина «ямы», а энергия отсчитывается от ее дна (рис.33.1).
Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде
+ (Е- U)Ψ = 0. (33.12)
По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х =0 и х=l) непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид
Ψ(0)=Ψ(l)=0. (33.13)
В пределах «ямы» уравнение Шредингера сведется к уравнению
+ Е Ψ = 0. (33.14)
Стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Еп зависящих от целого числа п.
Еп= ,(n= 1, 2, 3, …).(33.15)
Следовательно, энергия Еп частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т.е. квантуется. Квантованные значения энергии Еп - называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Еп, или, как говорят, частица находится в квантовом состоянии п. Частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная .
Дата публикования: 2014-10-04; Прочитано: 1145 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!