яРСДНОЕДХЪ.нПЦ цКЮБМЮЪ | яКСВЮИМЮЪ ЯРПЮМХЖЮ | йНМРЮЙРШ | лШ ОНЛНФЕЛ Б МЮОХЯЮМХХ БЮЬЕИ ПЮАНРШ!  
 

гИПЕРТРОФИЯ. 9. гИПЕРПЛАЗИЯ



Компенсация нарушений энергетического обеспечения клеток. При повреждении клетки, как правило, в большей или меньшей мере страдают митохондрии и снижается ресинтез АТФ в процессе тканевого дыхания. Это служит сигналом для увеличения "продукции" АТФ в системе гликолиза. При слабой или умеренной степени повреждения активация ресинтеза АТФ может быть достигнута за счет повышения активности ферментов, принимающих участие в процессах окисления и фосфорилирования.

Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизации энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФазы), а также ограничение функциональной активации клетки. Последнее способствует существенному уменьшению расхода энергии АТФ.

Защита мембран и ферментов клеток. Одним из значимых механизмов повреждения мембранного аппарата и энзимов клетки является интенсификация свободнорадикальных и перекисных реакций. Интенсивность этих реакций ограничивается главным образом ферментами антиоксидантной защиты – супероксиддисмутазой (инактивирующей радикалы кислорода), каталазой и глютатионпероксидазами, расщепляющими соответственно перекиси водорода и липидов.

Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и как следствие избыточной гидролитической активности лизосомальных энзимов.

Важную роль в защите мембран и ферментов клеток от повреждению играют ферменты микросом (прежде всего эндоплазматической сети), обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д. Альтерация клеток может сопровождаться дерепрессией генов и, как следствие, активацией процессов синтеза и репарации компонентов мембран (белков, липидов, углеводов) взамен поврежденных или утраченных.

Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках. При повреждении клеток устранение дисбаланса ионов и жидкости может быть достигнуто путем активации механизмов энергетического обеспечения ионных "насосов", а также 3защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса играет изменение интенсивности характера метаболизма, а также действие внутриклеточных буферных систем. Так, усиление гликолиза, сочетающегося с распадом гликогена, сопровождается высвобождением из его молекул ионов калия, содержание которого в поврежденных клетках понижено в связи с повышением поницаемости их мембран. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать 3восстановлению оптимального соотношения в гиалоплазме и трансмембранного распределения ионов калия, натрия, кальция и др., в частности, путем уменьшения содержания в клетке ионов водорода. Снижение степени дисбаланса ионов в свою очередь может сопровождаться нормализацией содержания и циркуляции внутриклеточной жидкости, объема клеток и их органелл, а также электрофизиологических параметров.

Устранение нарушений в генетической программе клеток. Изменения структуры ДНК, ведущие к повреждению клеток, могут быть обнаружены и 3устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обеспечивают обнаружение и удаление измененного участка ДНК (они получили название эндонуклеаз или рестриктаз), синтез нормального фрагмента нуклеиновой кислоты взамен удаленного (с помощью ДНК-полимераз) и встраивание вновь синтезированного фрагмента на место удаленного (с участием лигаз). Помимо этих сложных ферментных систем репарации ДНК, в клетке имеются энзимы, устраняющие "мелкомасштабные" биохимические изменения в геноме. К их числу относятся демителазы, удаляющие метильные группы; лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излечения или свободных радикалов, и др.

Компенсация расстройствме механизмов регуляции в нутриклеточных процессов. К числу реакций, эффективно компенсирущих нарушения механизмов восприятия клеткой регулирующих влияний, относится изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки и ее органелл, а также чувствительности (сродства) рецепторов к этим веществам. Количество рецепторов может меняться, в частности, благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависят характер и выраженность ответа на них.

Избыток или недостаток гормонов и нейромедиаторов, а также существенные колебания их активности могут быть "сдемпфированы" на уровне так называемых вторых посредников реализации нервного стимула, в частности циклических нуклеотидов и фосфоинозитольной системы. Известно, например, что соотношение цАМФ и цГМФ изменяется не только в результате действия внутриклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может в определенной мере компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

Снижение функциональной активности клеток. Важное значение среди адаптивных механизмов поврежденных клеток имеет управляемое, регулируемое снижение их функциональной активности. Это обусловливает уменьшение расхода энергии АТФ, субстратов метаболизма и кислорода, необходимых для осуществления функции и обеспечения пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обусловливающих временное понижение функции клеток, можно отнести уменьшение эффективных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций, репрессию активности отдельных генов.

Адаптация клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие адаптивное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии.

Регенерация (от лат. regeneratio - возрождение, восстановление). Означает возмещение клеток и (или) отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую 3клеточную и внутриклеточную (субклеточную) формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл: митохондрий, ядра, эндоплазматической сети и других вместо поврежденных или погибших.

Гиперплазия (от греч. hyper - чрезмерно, увеличение + греч. plasis - образование, формирование). Характеризуется увеличением числа структурных элементов, в частности органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.

Межклеточные (системные) механизмы адаптации клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, ФАВ, ионами. В свою очередь взаимодействие клеток и органов в организме в целом обеспечиваются функционированием систем- и кровообращения, иммунобиологического надзора, эндокринными и нервными влияниями.

Так, уменьшение содержания кислорода в крови (что обусловливает или может обусловить повреждение клеток, прежде всего, мозга) рефлекторно через раздражение хеморецепторов стимулирует нейроны дыхательного центра. Это приводит к увеличению объема альвеолярной вентиляции и ликвидирует или уменьшает степень недостатка кислорода в крови и тканях. Повреждение в результате увеличения выработки гормонов, способствующих повышению в крови уровня глюкозы и транспорта ее в клетки: адреналина, глюкокортикоидов, соматотропного гормона и др.

Примером адаптивной реакции циркуляторного типа может быть увеличение притока крови по коллатеральным (обходным) сосудам при закрытии просвета магистральной артерии какого-либо органа или ткани.

Иммунные механизмы надзора и защиты включаются при действии патогенного фактора антигенной природы. Иммунокомпетентная система с участием фагоцитов, антител и (или) Т-лимфоцитов инактивирует эндо и экзогенные антигены, способные повредить клетки организма. В норме указанные выше и другие системы обеспечивают адекватное реагирование организма в целом на различные воздействия эндо- и экзогенного происхождения. В патологии они участвуют в регуляции и реализации механизмов защиты, компенсации и восстановления поврежденных структур и нарушенных функций клеток и тканей.

Характерной чертой межклеточных механизмов адаптации является то, что они реализуются в основном при 3участии клеток, которые неподвергались непосредственному воздействию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

По уровню реализации реакции межклеточной адаптации при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные.

Примером реакции органно-тканевого уровня может служить активация функции поврежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, способствует уменьшению степени их альтерации и реализации репаративных процессов.

К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает поддержание высокого уровня перфузионного давления в тканях и предотвращает (или уменьшает степень) повреждения их клеток.

Вовлечение в адаптивные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток.

Активация внутриклеточных и межклеточных механизмов адаптации при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и (или) защитно-приспособительные механизмы недостаточны, развивается необратимое повреждение клеток и они погибают.





дЮРЮ ОСАКХЙНБЮМХЪ: 2014-10-30; оПНВХРЮМН: 339 | мЮПСЬЕМХЕ ЮБРНПЯЙНЦН ОПЮБЮ ЯРПЮМХЖШ | лШ ОНЛНФЕЛ Б МЮОХЯЮМХХ БЮЬЕИ ПЮАНРШ!



studopedia.org - яРСДНОЕДХЪ.нПЦ - 2014-2024 ЦНД. яРСДНОЕДХЪ МЕ ЪБКЪЕРЯЪ ЮБРНПНЛ ЛЮРЕПХЮКНБ, ЙНРНПШЕ ПЮГЛЕЫЕМШ. мН ОПЕДНЯРЮБКЪЕР БНГЛНФМНЯРЭ АЕЯОКЮРМНЦН ХЯОНКЭГНБЮМХЪ (0.005 Я)...