Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

How we read and write numbers



To make it easier to read1 large numbers, we separate the figures of the numbers by commas into groups of three, counting from right to left. Each group is called a period and has its own name.

The system of numbers we use, called Arabic system, is a decimal system: that is, it is based on tens. In this system, the value a digit represents is determined by the place2 it in the number; if a digit is moved to the left one place, the value it represents becomes ten times as great3.

Zero in the decimal system is a "place-holder"; in the number 30, the zero shows that 3 has been moved to the left one place, thus counting tens instead of ones. The place value in numbers is shown below:

682,000,000,000 847,000,000 136,000 592

Billions Millions Thousands Ones

These numbers are read: six hundred eighty-two billion, eight hundred forty-seven million, one hundred thirty-six thousand, five hundred and ninety-two.

682,000,000,000 847,000,000 136,000 592

Billions Millions Thousands Ones or Units

4 periods 3 periods 2 periods 1 period

Rule to Remember. a) All periods of a number contain three digits, or places (the first period on the left may or may not). b) Zero is used as a place-holder.

Average. When we want to find a single number that will represent all the numbers in a group of unequal numbers or quantities we find the average (or arithmetic mean). To find the average of a group of unequal numbers, we add the numbers and then divide their sum by the number of addends.

Notes:

1 to make it easier to read - для того, чтобы легче читать

2 is determined by the place - определяется местом

3 ten times as great - в десять раз больше





Дата публикования: 2014-10-30; Прочитано: 814 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.611 с)...