Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Мощность машин и её преобразование в механизмах



Человечество до сих пор ещё не научилось создавать энергию. Вся энергия, используемая даже самыми передовыми цивилизациями (Сша, Япония) добыта всего лишь примитивным грабежом у природы. В этом смысле современный человек не продвинулся качественно дальше дикаря с охапкой веток для костра.

Вся, так называемая "энергетика", а также все машины, механизмы, вся низкая и высокая технология − заняты всего лишь переработкой, преобразованием и, главное, тратой энергии, созданной природой (излучение солнца, ядерная энергия, ископаемые энергоносители, кинетическая энергия ветра и воды).

Ошибкой было бы думать, что какой-либо механизм в принципе способен производить, увеличивать или хотя бы сохранять энергию.

Поскольку люди и их машины существуют в режиме реального времени, то более практичной и наглядной величиной является мощность − производная от совершаемой работы по времени, которую можно фактически назвать "скоростью совершения работы" или "скоростью преобразования энергии". Мощность (исчисляемая в лошадиных силах или ваттах) является главнейшей характеристикой всех машин, от старинных паровых котлов до сложнейших мехатронных систем. В плане законов физики, законов сохранения, понятия мощности и энергии могут считаться практически синонимами. Когда теряется энергия, снижается и мощность.

Мощность, однако, не является параметром, её невозможно измерить непосредственно. В философии есть понятия "сущность" и "явление". Так вот, мощность это сущность процессов движения машин, а является она нам в виде силы и скорости, или в виде вращающего момента и угловой скорости. Эти параметры (сила F, момент M, скорость V или угловая скорость ω) поддаются измерению, а соответственно может быть вычислена и мощность N.

В несложных формулах (математических моделях) мощности при поступательном движении N=F∙V и при вращательном движении N=M∙ω видно, что сомножители могут изменяться в разные стороны, а произведение оставаться тем же. Так одна и та же мощность может быть реализована либо высокой скоростью и малой силой (высокоскоростные машины и механизмы), либо большой силой на малых скоростях (тихоходные высоконагруженные машины и механизмы).

Механическая мощность передаётся механизмами от двигателя (входного звена) к потребителю (выходному звену) и на этом пути может только убывать за счёт потерь на трение главным образом в кинематических парах, а также контакте деталей с окружающей средой (смазка, воздух и т.п.). Потери на трение в механизмах учитываются коэффициентом полезного действия (КПД), который показывает, сколько процентов составляет полезная мощность (полученная потребителем через выходное звено) от затраченной мощности (полученной входным звеном от двигателя). КПД фактически учитывает все потери на трение.

Так, мощность, доходящая до выходного звена и получаемая потребителем будет равна ,

где Nдв − мощность, развиваемая двигателем на входном звене;

− коэффициент полезного действия всего механизма.

В многоступенчатых механизмах с многозвенными кинематическими цепями с последовательным соединением (рис.29) общие потери учитываются произведением КПД всех η ступеней кинематической цепи.

Рис.29. Механизм с последовательным соединением звеньев

Так, для многоступенчатого механизма мощность на i -м звене кинематической цепи Ni=Nдв∙η1∙η2∙…∙ηi-1, а мощность на выходном звене Nвых=Nдв∙η1∙η2∙…∙ηi∙…∙ηn, где η1, η2, η3,....η4 − соответственно КПД 1-й, 2-й, 3-й и т.д. всех ступеней механизма.

В многоступенчатых механизмах параллельной структуры (рис.30) конструктором назначается распределение мощностей

Рис.30. Распределение мощности при параллельном соединении механизмов

где βi долевые коэффициенты распределения мощности, которое подчиняются условию β12+…+βi+…+βn=1.

Учитывая, что Nвых = Nвых1 + Nвых2 +... + Nвыхi +... + Nвыхn, КПД такой схемы вычислим как

В частном случае, если мощность от двигателя распределяется по механизмам поровну и их КПД равны, то η=ηi/n, где n − число параллельно соединённых механизмов.

Скорости и угловые скорости звеньев в каждой кинематической паре жёстко регламентированы кинематикой механизма. Они вычисляются по формулам кинематики для каждого конкретного вида кинематической пары, как это делается в кинематическом анализе механизма.

Получив из кинематического анализа линейные и угловые скорости всех звеньев механизма, а также подсчитав мощности, передаваемые звеньями, нетрудно вычислить силы (поступательное движение) и вращающие моменты (вращательное движение) на всех звеньях механизма

Зная эти свойства преобразования мощности, частоты вращения и вращающего момента в механизме, можно оценить распределение нагрузок по звеньям и тем самым получить предварительные исходные данные для расчёта на прочность деталей машины.





Дата публикования: 2014-10-19; Прочитано: 1377 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...