Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Римский способ записи чисел является примером непозиционной системы счисления, а арабский – это позиционная система счисления



Следует подчеркнуть связь между способом записи чисел и приемами арифметических вычислений в соответствующей системе счисления. Предложите ученикам выполнить умножение, например, числа сто тридцать четыре на семьдесят шесть, используя римскую и арабскую системы счислений! С арабскими числами они легко справятся, а также смогут убедиться, что римские цифры – не помощники в вычислениях. В римской системе нет простых и понятных правил выполнения вычислений с многозначными числами. Для арабской системы такие правила известны еще с IX века. В этой теме полезно рассказать ученикам, что правила выполнения вычислений с многозначными числами были разработаны выдающимся математиком средневекового Востока Мухамедом аль-Хорезми и в Европе были названы алгоритмами (от латинского написания имени аль-Хорезми – Algorithmi). Этот факт следует напомнить позже, при изучении алгоритмизации. Итак, именно позиционные системы счисления стали основой современной математики. Далее, как и в математике, в информатике мы будем иметь дело только с числами в позиционных системах счисления.

Теперь нужно дать понять ученикам, что позиционных систем счисления существует множество, и отличаются они друг от друга алфавитом – множеством используемых цифр. Размер алфавита (число цифр) называется основанием системы счисления. Задайте вопрос: «Почему арабская система называется десятичной системой счисления?» Наверняка услышите в ответ про десять цифр в алфавите. Делаем вывод: основание арабской системы счисления равно десяти, поэтому она называется десятичной.

Следует показать алфавиты различных позиционных систем счисления. Системы с основанием не больше 10 используют только арабские цифры. Если же основание больше 10, то в роли цифр выступают латинские буквы в алфавитном порядке. Из таких систем в дальнейшем будет рассматриваться лишь шестнадцатеричная система.

Далее нужно научить учеников записывать натуральный ряд чисел в различных позиционных системах. Объяснение следует проводить на примере десятичной системы, для которой вид натурального ряда чисел им хорошо известен:

1 2 3 4 5 6 7 8 9 10 11 … 19 20 … 99 100 101 …

Принцип построения ряда такой: сначала в порядке возрастания значений записываются все однозначные числа; первое двузначное число – всегда 10 (у многозначных целых чисел 0 впереди не является значащей цифрой и, обычно, не пишется). Далее следуют все двузначные сочетания единицы с другими цифрами; затем – двузначные числа, начинающиеся с 2, затем – с 3 и т.д. Самое большое двузначное число – 99. Затем идут трехзначные числа, начиная от 100 до 999 и т.д.

По такому же принципу строится натуральный ряд и в других системах счисления. Например, в четверичной системе (с основанием 4):

1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 100 101 102 103 110 111 … 333 1000 …

Аналогично и для других систем. Наибольший интерес представляет натуральный ряд двоичных чисел. Вот как он выглядит:

1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000

и т.д. Следует обратить внимание учеников на быстрый рост числа цифр.

Для указания на основание системы, к которой относится число, вводим индексное обозначение. Например, 368 указывает на то, что это число в восьмеричной системе счисления, 1A616 – шестнадцатеричное число, 10112 – число в двоичной системе. Индекс всегда записывается десятичным числом. Следует подчеркнуть то, что в любой системе счисления ее основание записывается как 10.

Еще одно важное замечание: ни в коем случае нельзя называть недесятичные числа так же, как десятичные. Например, нельзя называть восьмеричное число 368 как тридцать шесть! Надо говорить: «Три-шесть». Или, нельзя читать 1012 как «сто один». Надо говорить «один-ноль-один»». Следует также понимать, что, например, 0,12 – это не одна десятая, а одна вторая, или 0,18 – это одна восьмая и т.п.

Сущность позиционного представления чисел отражается в развернутой форме записи чисел. Снова для объяснения привлекаем десятичную систему. Например:

5319,12 = 5000 + 300 + 10 + 9 + 0,1 + 0,02 =

= 5´103 + 3´102 + 1´101 + 9 + 1´10-1 + 2´10-2

Последнее выражение и называется развернутой формой записи числа. Слагаемые в этом выражении являются произведениями значащих цифр числа на степени десятки (основания системы счисления), зависящие от позиции цифры в числе - разряда. Цифры в целой части умножаются на положительные степени 10, а цифры в дробной части – на отрицательные степени. Показатель степени является номером соответствующего разряда. Аналогично можно получить развернутую форму чисел в других системах счисления. Например, для восьмеричного числа:

17538 = 1´103 + 7´102 + 5´101 + 3.

Здесь 108 = 810.

Следующий вопрос, изучаемый в этом разделе – способы перевода чисел из одной системы в другую. Основная идея заключается в следующем: перевод чисел неизбежно связан с выполнением вычислений. Поскольку нам хорошо знакома лишь десятичная арифметика, то любой перевод следует свести к выполнению вычислений над десятичными числами.

Объяснение способов перевода следует начать с перевода десятичных чисел в другие системы счисления. Делается это просто: нужно перейти к записи развернутой формы числа в десятичной системе. Вот пример такого перехода для приведенного выше восьмеричного числа:

17538 = (1´103 + 7´102 + 5´101 + 3)8 = (1´83 + 7´82 +5´81 + 3)10

Теперь нужно вычислить полученное выражение по правилам десятичной арифметики и получить окончательный результат:

17538 = (192 + 448 + 40 + 3)10 = 68310

Чаще всего развернутую форму числа сразу записывают в десятичной системе. Вот еще пример с двоичным числом:

101101,12 = (1´25 + 0´24 + 1´23 + 1´22 + 0´21 + 1 + 1´2-1)10 =

= 32 + 8 + 4 + 1 + 0,5 = 45,510

Для вычисления значения числа по его развернутой форме записи существует удобный прием, который называется вычислительной схемой Горнера. Суть его состоит в том, что развернутая запись числа преобразуется в эквивалентную форму с вложенными скобками. Например, для рассмотренного выше восьмеричного числа, это выглядит так:

17538 = (1´83 + 7´82 +5´81 + 3)10 = ((1´8+7)´8+5)´8+3

Нетрудно понять, что если раскрыть скобки, то получится то же самое выражение. В чем же удобство скобочной структуры? А в том, что ее вычисление производится путем выполнения последовательной цепочки операций умножения и сложения в порядке их записи слева направо. Для этого можно использовать самый простой калькулятор (без памяти), поскольку не требуется сохранять промежуточные результаты. Схема Горнера сводит вычисление таких выражений к минимальному числу операций.

Перевод десятичных чисел в другие системы счисления – задача более сложная. В принципе, все происходит через ту же самую развернутую форму записи числа. Только теперь нужно суметь десятичное число разложить в сумму по степеням нового основания n¹10. Например, число 8510 по степеням двойки раскладывается так:

8510 = 1´26 + 0´25 + 1´24 + 0´23 + 1´22 + 0´2 + 1 = 10101012

Однако проделать это в уме довольно сложно. Здесь следует показать формальную процедуру (алгоритм) такого перевода. Описание алгоритма можно прочитать в учебнике [21] или пособии [2]. Там же дается математическое обоснование алгоритма. Разбор этого обоснования требует от учеников определенного уровня математической грамотности и возможен в варианте углубленного изучения базового курса.

В рамках минимального объема базового курса не обязательно изучать приемы перевода дробных десятичных чисел в другие системы счисления. При знакомстве с этим вопросом в углубленном курсе нужно обратить внимание на следующее обстоятельство: десятичные дроби с конечным числом цифр при переводе в другие системы могут превратиться в бесконечные дроби. Если удается найти период, тогда его следует выделить. Если же период не обнаруживается, то нужно договориться о точности (т.е. о количестве цифр), с которой производится перевод.

Если ставится цель получения при переводе дробного числа наиболее близкого значения, то, ограничивая число знаков, нужно производить округления. Для этого, в процессе перевода следует вычислять на одну цифру больше, а затем, применяя правила округления, сокращать эту цифру. Выполняя округление, нужно соблюдать следующее правило: если первая отбрасываемая цифра больше или равна n/2 (n – основание системы), то к сохраняемому младшему разряду числа прибавляется единица. Например, округление восьмеричного числа 32,324718 до одного знака после запятой даст в результате 32,3; а округление до двух знаков после запятой – 32,33.





Дата публикования: 2015-01-23; Прочитано: 2146 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...