Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определения. Если из двух объектов a и b ЛПР выбирает a, то говорят, что a предпочтительнее b



Для описания предпочтений используют бинарные отношения, вводимые на множестве А сравниваемых объектов. В многокритериальной задаче роль таких объектов играют X или Y на множествах D и G соответственно.

Если из двух объектов a и b ЛПР выбирает a, то говорят, что a предпочтительнее b. Все пары вида (a,b), где a,bÎА, для которых a предпочтительнее b, образуют множество, называемое отношением строгого предпочтения на А. Такое отношение обозначают символом ý (a ý b или a P b, где Р – первая буква английского слова preferance – предпочтение).

Объекты a и b неразличимы для ЛПР, если они одинаковы по предпочтительности. Это значит, что не выполняется ни отношение a ý b, ни b ý a. Множество всех неразличимых пар (a, b) называют отношением неразличимости или безразличия и обозначают символом ~ (a~b или a I b, где I происходит от indifference – безразличие).

Очевидно, что для любой пары a,b A выполняется только одно из трех соотношений: a ý b, b ý a, a~b. Объединение P и I дает отношение нестрогого предпочтения, обозначаемого символом (a b или a R b). Отношение a b означает, что a не менее предпочтительно, чем b.

В соответствии с этими определениями решение Х * D (вектор Y * G) называют оптимальным по отношению ý на множестве D (G), если не существует другого решения Х D (вектора Y G), для которого справедливо соотношение ХýХ * (YýY*). Если для любых X D ( Y G) выполняется соотношение X * X (Y* Y), то X * D ( Y * G) называется оптимальным решением (вектором) по отношению.

При сравнении по предпочтительности векторов Y=f(X ) наиболее просто сопоставлять те вектора, которые отличаются лишь одной компонентой. Однако в общем случае частные критерии yi = fi (X) могут по-разному соотноситься по предпочтительности в зависимости от того, на каких уровнях зафиксированы остальные критерии. Так если вектор (, ) предпочтительнее вектора (), а вектор () менее предпочтителен, чем (), то какое из значение первого критерия, или , предпочтительнее сказать нельзя без знания значений остальных критериев. Так, например, чем выше потолок комнаты, тем лучше, но справедливо это до определенных соотношений высоты, ширины и длины комнаты. Чаще, однако, все значения частного критерия можно упорядочить по предпочтению без учета значений других критериев. Такие критерии называют независимыми по предпочтению от остальных. Примерами могут служить прибыль, издержки и т.п.

Задачи, в которых все критерии независимы по предпочтению, а отношением строгого предпочтения R является отношение >= (не меньше) называются многокритериальными задачами максимизации (аналогично при отношении «не больше» – задачами минимизации).

Напомним, что R включает (объединяет) P и I. На множестве G (или D) отношение строгого порядка P задают неравенством Y Y (т.е. Y Y и Y Y ) или Y>Y (т.е. для ). Наконец, равенство = порождает отношение безразличия.

Вектор (решение), оптимальный по отношению ≥ на множестве G (D), называется эффективным или парето-оптимальным. Значит, вектор Y *ÎG является парето-оптимальным (оптимумом Парето), если не существует вектор Y Î G такой, что Y ³ Y*. Множество таких векторов обозначают через Р(Y)и называют множеством Парето (эффективным множеством). Множество эффективных решений обозначают через Р(X).

Вектор, оптимальный по отношению >, называют слабо эффективным, слабо оптимальным по Парето (слабым оптимумом Парето). Значит, вектор Y *ÎG слабо парето оптимальный, если не существует Y ÎG такой, что Y>Y*. Множество таких векторов называют слабо эффективным и обозначают через S(Y). Соответствующее множество слабо эффективных решений имеет обозначение S(X ). Если в G не найдётся Y³Y *, то не существует и Y>Y*. Следовательно, всякий эффективный вектор одновременно является и слабо эффективным, т.е. P(Y)ÍS(Y). Аналогично P(X) Í S(X).

Различие эффективного и слабо эффективного множеств хорошо видно на рис.10.3. Множество P(Y) состоит из частей границы множества G: кривых bc, de (исключая точки d и e) и gh, аS(Y)– из кривой abcde (включая точку e) и кривой ghk. Точка d не входит в P(Y), т.к. она доминируется точкой c. Точно также точка e менее предпочтительна, чем g.

Геометрическое определение множеств P(Y) и S(Y) основано на том, что все точки YÎE m, для которых выполняется неравенство Y³Y0, образуют ортант (для m =2 – прямой угол), стороны которого параллельны координатным осям, а вершиной является точка Y0.

Поэтому, если весь угол (ортант), построенный на некоторой точке Y * G, расположен вне множества G, то Y * парето-оптимальна. Если кроме вершины Y * пересечение ортанта и G содержит только точки, лежащие на одной из сторон ортанта, то Y* слабо парето-оптимальна, при этом Y* P(Y), т.е. не является эффективной.

Понятие слабой эффективности оказывается полезным и в случае, когда приходится сокращать первоначальный набор критериев. Нередко на первых этапах исследования трудно определить минимально необходимый набор критериев и поэтому начинают с возможно более полного набора. По мере изучения свойств задачи выявляются несущественные критерии, которые исключаются из дальнейшего рассмотрения. В [30] показано, что множество слабо эффективных решений, выделяемое на полном наборе критериев, содержит все исходные решения, эффективные по сокращенному набору критериев.





Дата публикования: 2015-01-23; Прочитано: 277 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...