![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Приращением функции y =f(x) в точке x0 называется разность
Δу=f(x)-f(x0)= f(x+Δx)-f(x0)
Производной от функции y=f(x) в точке х0 наз. Предел отношения Δу/Δх, когда Δх→0 (при усл., что этот предел существует)
Написать обозначение производной.
Геометрический смысл производной.
Пусть Г- график функции y=f(x). Рассмотрим на Г т. А(x0,f(x0)) и т. В (x0+Δx,f(x0+Δx))
Прямая АВ называется секущей. Будем считать, что y=f(x)-непрерывная функция, тогда если Δх→0, то f(x0+Δx)→f(x0), т.е. В→А при Δх→0.
Пусть γ – угол наклона секущей относительно оси ОХ. Если существует предел lim γ=γ0 при Δх→0, то прямая, проходящая через А и образующая с осью ОХ угол γ0, называется касательной к Г в точке А.
Пусть С(f(x0+Δх), f(x0)) – точка, дополняющая отрезок АВ до прямоуг. треугольника АВС. Т.к. АС//ОХ, то tgγ =Δу/Δх. Переходя к пределу, получим: tgγ0=f′(x0)
Т.е. геометрический смысл производной состоит в том, что f′(x0) – это тангенс угла наклона касательной к графику y=f(x) в точке (x0,f(x0)).
Уравнение касательной.
Найдем ур-е касательной к графику Г ф-и y=f(x) в точке А(х0, f(x0)): т.к. т. А принадлежит Г и ур-ю касательной, то f(x0)=kx0+b, откуда b= f(x0)-kx0, значит, касательная задается след. Ур-м:
y= kx+ f(x0)-kx0= f(x0)+k(х-x0)
Т.к. k= f′(x0), то
y=f(x0)+ f′(x0)(х-х0).
Определение эластичности функции.
функции y = f(x) в точке х0 называется следующий предел
Eyx(x0) = lim ((Δy/y): (Δx/x)).
Δx ® 0
Эластичность Ey – это коэффициент пропорциональности между относительными изменениями величин y и x.)
Дата публикования: 2015-02-20; Прочитано: 211 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!