![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Оценка
не только минимизирует сумму взвешанных квадратичных отклонений S(
), но и обладает рядом других свойств.
Несмещенность.
Оценка параметра называется несмещенной, если ее математическое ожидание равно оцениваемому (истинному) значению параметра.
Если
- МНК-оценка, то можно доказать, что
,
т.е.
-несмещенная оценка.
Это означает, что если сделать 100 экспериментов и определить Е(
), то при несмещенной оценке среднее значение
Е(
) будет стремиться к
. Несмещенность оценки позволяет получить еще один практически очень важный вывод:
Согласно неравенству Чебышева для случайной величины z с любым законом распределения справедливы соотношения:

или

где
>0- произвольное число,
- дисперсия случайной величины z.
Если оценка
несмещенная, то
-мала, следовательно малы члены
.
Т.е. при малой дисперсии
, т.е. при несмещенной оценке,
с большой вероятностью мало отличается от
.
Отсюда можно сделать вывод:
Если сделать один эксперимент (а не 100), и получить несмещенную оценку
, то она с большой вероятностью мало отличается от
.
2. Состоятельность.
Оценка параметра состоятельна, если при увеличении объема выборки она стремится к истинному значению параметра. Можно показать, что МНК-оценка
,полученная в результате N-измерений, будет состоятельной, т.е. при
вероятность того, что длина вектора
, т.е. этого не будет.

Отсюда вывод: в рамках одного эксперимента целесообразно увеличивать количество измерений N, т.к. при состоятельной оценке(а МНК-оценка состоятельна), она стремится при росте N к истинному значению.
3. Наилучшая линейнаянесмещеннаяоценка. (НЛН-оценка).
Любую оценку
вектора
будем называть линейной, если она определяется через вектор
измеряемой величины. То есть линейная оценка записывается
, где Т ‑ какая-либо матрица.
Т.е.
‑ есть линейная комбинация измеренных значений.
Обозначим через
ą ‑ множество всех возможных несмещенных оценок вектора
. (ą – а готическое)
Оценка
из ą называется наилучшей линейной несмещенной оценкой вектора
, если
(*)
Здесь
-любая оценка из ą.
и
- дисперсионная (ковариационная) матрица случайного вектора
и
, каждый элемент которой dij определяется выражением:
(1.19)
Диагональные элементы матрицы
и
-это дисперсии координат
вектора
.
(1.20)
Замечания к формуле (*):
Матричное неравенство А
В, где А и В-матрицы размерности
,означает, что для любого вектора
размерности m выполняется неравенство:

Условие (*) не очень наглядно. Однако из него вытекают следующие полезные свойства НЛН-оценок:
а)
(1.21)
Т.е. дисперсия каждой из координат вектора НЛН-оценки является наименьшей по сравнению с дисперсией той же координаты произвольной линейной несмещенной оценки. Значит, в силу неравенства Чебышева для НЛН-оценки (как обладающей минимальной дисперсией) увеличивается вероятность того, что
отличается по модулю от
меньше, чем на
.
б)
(1.22)
![]() |
При нормальном законе распределения случайной величины определитель дисперсионной матрицы выражает объем эллипсоида в m-мерном пространстве параметров
. Его центр находится в точке
, а внутри эллипсоида с заданной вероятностью располагается оценка
. Чем меньше определитель, тем плотнее примыкают оценки к истинному значению.
Можно показать, что МНК-оценки являются одновременно и НЛН-оценками, т. е. 
4. Эффективность.
Оценка эффективна, если она характеризуется наименьшей дисперсией. Т. к. МНК-оценка является НЛН-оценкой, то в соответствии с (*) она обладает наименьшей дисперсией.
Таким образом, НЛН-оценки и МНК-оценки эффективны в классе линейных несмещенных оценок.
5. Дисперсионная матрица
совпадает с матрицей, обратной информационной матрице Фишера.
=М-1
6. Наилучшей линейной оценкой поверхности отклика является регрессионная модель, в которой коэффициенты получены методом наименьших квадратов, т. е. с помощью МНК-оценок.

В этом случае дисперсия поверхности отклика:

Функция
называется коридором ошибок. Она характеризует разброс МНК-оценок (НЛН) поверхности отклика от ее истинных значений.
Дата публикования: 2015-02-20; Прочитано: 789 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
