Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Геометрический смысл линейных неравенств



Уравнение А×х+В×у+С=0 определяет на плоскости прямую, которая является границей двух полуплоскостей. Координаты любой точки одной полуплоскости удовлетворяют неравенству А×х+В×у+С>0, координаты любой точки другой – неравенству А×х+В×у+С<0.

Поэтому, чтобы решить, какая именно полуплоскость определяется неравенством А×х+В×у+С>0, например, следует подставить координаты конкретной точки в это неравенство. Если получите верное неравенство, то неравенство А×х+В×у+С>0 определяет ту полуплоскость, в которой лежит выбранная точка.

Например, решим, какую полуплоскость задает неравенство 2х-3у+6<0. Построим прямую 2х–3у+6=0 по точкам пересечения ее с осями координат.

х -3 0

у 0 2

 
 


Рисунок - 29

Координаты точки О(0;0) не удовлетворяют неравенству 2х-3у+6<0.

Поэтому нужная полуплоскость не содержит точку О. Таким образом, неравенство 2х-3у+6<0 определяет полуплоскость, лежащую «выше» прямой (заштрихована).

Очевидно, полуплоскость, содержащая начало координат, определяется неравенством 2х-3у+6>0.

Пример № 6.

Построить множество точек, удовлетворяющих системе неравенств:

1)

Построим две прямые

3х+4у–12=0 и х–4у–4=0

х       х    
у       у   –1

Рисунок - 30

Координаты точки О(0;0) удовлетворяют и неравенству 3х+4у-12<0 и неравенству х-4у-4<0. Искомая область – угол, образованный построенными прямыми (двойная штриховка).

2)

Прямая у–4=0 параллельна оси Ох, а неравенство у>4 определяет полуплоскость, лежащую «выше» прямой. Прямая х–у=0 или у=х совпадает с биссектрисой первого и третьего координатных углов. Нужная полуплоскость лежит «ниже» биссектрисы, т. к. у<х.

Искомая область – угол под двойной штриховкой.

Рисунок - 31

3)

2х-3у+6=0 4х-6у-9=0

х -3     х  
у       у  

Искомая область – полоса между двумя параллельными прямыми.

Рисунок – 32

4)

х–у+1=0, х–3у-6+0, х+у+4=0

х -1     х       х -4  
у       у   -2   у   -4

Искомая область – треугольник (под тройной штриховкой).

Рисунок - 33





Дата публикования: 2015-02-18; Прочитано: 336 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...