![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
В этих задачах используется определенный интеграл, который вычисляется по формуле Ньютона-Лейбница.
где F(x) - первообразная для f(x), то есть F'(x) = f(x);
a и b - пределы интегрирования, показывающие, как меняется переменная интегрирования х.
Обратите внимание на то, что определенный интеграл - это число в отличие от неопределенного интеграла, который является множеством функций. Формула Ньютона-Лейбница связывает определенный и неопределенный интегралы. Чтобы ею воспользоваться, следует взять сначала неопределенный интеграл (вернее, найти лишь одну первообразную, не прибавляя произвольной постоянной), а затем вычислить разность значений первообразной в верхнем и нижнем пределах интегрирования.
Например
Задача. Вычислить площадь фигуры, ограниченной параболой и прямой
. Сделать чертеж.
Решение. Построим параболу и прямую.
Для построения параболы найдем координаты ее вершины и точки пересечения ее с осями координат.
Вершина параболы является точкой экстремума, поэтому для ее отыскания найдем производную и приравняем ее к нулю.
;
;
,
Тогда .
Итак, вершина параболы в точке .
Точки пересечения параболы с осью Ох: , тогда
, откуда
;
, то есть точки
и
.
Точка пересечения с осью Оу: , тогда
; то есть точка
.
Строим параболу по найденным точкам, замечая, что ветви параболы направлены вверх (рис. 9).
Прямую у = х-1 строим по двум точкам:
получены точки (0;-1) и (1;0). Заштрихуем плоскую фигуру, ограниченную параболой и прямой.
Найдем точки пересечения параболы и прямой, решив систему уравнений:
Для отыскания искомой площади воспользуемся формулой
,
где функции f1(x) и f2(x) ограничивают фигуру соответственно снизу и сверху, то есть f2(х) ≥f1 (х) при х Є [а;b].
В нашей задаче f1(x) = x2 -6x + 5;f2(x) = x-l; x Є [l;6].
Поэтому
Ответ: Площадь искомой криволинейной трапеции:
Дата публикования: 2015-03-26; Прочитано: 186 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!