Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Метод Ньютона. Метод Ньютона применяется к решению уравнения, когда функция является непрерывно дифференцируемой функцией



Метод Ньютона применяется к решению уравнения, когда функция является непрерывно дифференцируемой функцией. Также вначале отделим корень уравнения на отрезке .

Рис. 5

Для начала вычислений требуется задание одного начального приближения внутри отрезка . Первое приближение вычисляется через это начальное по формуле рис. 5:

Общая формула метода Ньютона может быть записана с помощью рекуррентного соотношения:

,

где и .

Каждое последующее приближение вычисляется через предыдущее. Геометрически точка является значением абсциссы точки пересечения касательной к кривой в точке с осью абсцисс, поэтому часто метод Ньютона называют также методом касательных.

На практике можно встреться со случаем сходимости метода Ньютона, когда далеко от искомого корня, так и со случаем расходимости метода для - близких к корню. Возможен также случай зацикливания метода. Часто при неудачном выборе начального приближения нет монотонного убывания последовательности . В таком случае вычисления можно проводить по модифицированному методу Ньютона:

а сомножители выбираются так, чтобы выполнялось неравенство

.

Сомножители сжимают отображение. Рекомендуется всегда выбирать достаточно тесные границы корня , и в качестве начального приближения выбирать такую точку отрезка , где знаки функции и ее кривизны совпадают.

Условием выхода из итерационного процесса по методу Ньютона является выполнение неравенства

Пример: уточнить корень уравнения , находящийся на методом Ньютона с точностью .

Выберем в качестве начального приближения середину отрезка , т.е. ,

1. По рекуррентной формуле метода Ньютона вычислим

вычисления по методу Ньютона следует продолжить.

2. По рекуррентной формуле метода Ньютона вычислим

вычисления по методу Ньютона можно закончить.





Дата публикования: 2015-03-26; Прочитано: 340 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...