Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Зак 671 161




некоторое тело под действием силы F выходит из состоя­ния покоя и движется со все увеличивающейся скоростью в течение некоторого времени t. За это время скорость тела возрастает до значения V, и тело проходит некоторое рас­стояние х. Можно показать, используя законы механики, что справедливо равенство:

Величину Fx, равную произведению силы на расстояние, на котором она действовала на тело, принято называть работой А:

Теперь попробуем выяснить, входят ли работа и энер­гия как составные части в один и тот же закон сохране­ния? Или, выражаясь иначе, если над телом совершается работа, благодаря чему увеличивается кинетическая энер­гия тела, сможет ли тело потом за счет своего запаса ки­нетической энергии произвести столько же работы?

Ответ положителен. Если на пути движущегося тела окажется какое-то другое тело, скажем, пружина, то тело, налетая на пружину, будет сжимать ее, создавая перемеще­ние ее звеньев относительно друг друга, то есть будет дей­ствовать на пружину с некоторой силой. В конце концов, тело остановится, растратив всю свою энергию движения на совершение работы по сжатию пружины. Вслед за этим пружина начнет расширяться и будет толкать тело назад. То есть при своем расширении пружина совершит работу над телом, которая вся уйдет на увеличение кинетической энергии тела после остановки. Если пружина хорошая, упругая, то можно будет констатировать практическое ра­венство кинетической энергии тела до и после взаимодей­ствия с пружиной.

Чувствуется, что в наших рассуждениях пропущено некоторое звено. А именно, возникает вопрос: «В те мгно­вения, когда пружина сжата, и тело уже не действует на нее с силой, перемещая ее, то есть не совершает в эти мгнове­ния работу; само тело в эти мгновения покоится, так как запас ее кинетической энергии уже растрачен на соверше­ние работы по сжатию пружины. Так что в эти мгнове­ния ни работа не совершается, ни тело не имеет более ки­нетической энергии. Так куда же все это подевалось?» Мы


отчетливо видим, что пружина перешла в другое качест­венное состояние: из недеформированного состояния она перешла в сжатое, после чего, разжимаясь, сама соверши­ла работу. Мы приходим к пониманию того, что запас кинетической энергии не пропал бесследно, а перешел в запас энергии, которой обладает пружина в сжатом состо­янии, «мертвой силы», как ее первоначально называли. Такую неподвижную форму энергии принято называть по­тенциальной энергией, как бы подчеркивая, что эта энер­гия потенциально может перейти в энергию движения.

Самый простой способ запасти такую энергию — это поднять груз на высоту. Когда груз падает, запасенная потенциальная энергия превращается в кинетическую. И наоборот, когда мы испытываем усталость, поднимаясь на высокую горку или же по ступенькам на верхний этаж здания, связано это с тем, что мы постоянно совершаем работу по увеличению потенциальной энергии своего тела, поднимая его на соответствующую высоту.

Обычно термин «потенциальная энергия» относят к энергии, запасенной в деформированном теле, в теле, под­нятом на высоту, иными словами, к запасу энергии, обус­ловленному положением тела в некотором поле и приро­дой самого поля. Современной физике известны четыре типа полей: гравитационное, электромагнитное, сильное и слабое. Сам факт обусловленности потенциальной энергии наличием полей говорит о несводимости понятия потенци­альной энергии просто к механическому движению. Вели­чина потенциальной энергии определяется теми процессами, которые обусловлены конкретной природой взаимодействия системы тел (гравитационным, электромагнитным, сильным или слабым) и зависит от изменения конфигурации тел в соответствующих полях. Потенциальная энергия сжатой пружины, например, выражает собой энергию внутреннего движения частиц, составляющих пружину. Механика не занимается изучением «внутренних сил», связанных со взаимодействием атомов друг с другом, а интересуется ко­нечным результатом. Этот результат может быть вычис­лен по величине работы, которую нужно затратить, чтобы таким-то образом изменить конфигурацию частей пружи­ны. Запас этой работы и понимается нами как потенциаль­ная энергия пружины. Так что потенциальная энергия вхо-

6* 163


дит в механику как понятие, определяющее свойство систе­мы материальных тел совершать работу при изменении кон­фигурации тел в системе.

Таким образом, работа может быть определена как мера изменения энергии. В ряде случаев работа, соверша­емая за счет уменьшения потенциальной энергии тела, практически полностью идет на увеличение кинетической энергии тела. Позже мы укажем на ограниченность наше­го примера. Однако именно эти случаи послужили основа­нием для формулирования закона сохранения и превраще­ния энергии применительно к механическим процессам. Этот закон звучит следующим образом: полная энергия замкнутой консервативной системы тел, равная сумме их потенциальной и кинетической энергии, остается величи­ной постоянной. То есть всякое изменение потенциальной и кинетический энергии есть превращение потенциальной энергии в кинетическую, а кинетической в потенциальную. В случае механического движения передача энергии про­исходит в форме работы в процессе силового взаимодей­ствия тел.

Теперь оговоримся, что всякий физический закон име­ет границы своей применимости. Это в первую очередь от­носится к закону сохранения механической энергии. Пер­вое важное ограничение этого закона состоит в требовании изолированности системы рассматриваемых тел от внешних воздействий. Такую систему мы называем замкнутой. Вто­рое ограничение связано с тем, что не всегда работа одно­значно определяется изменением потенциальной энергии тела при перемещении его из одной точки поля в другую. Однозначное определение работы как меры изменения по­тенциальной энергии имеет место лишь для определенных типов полей, называемых потенциальными. Примерами таких полей могут служить гравитационное или электро­статическое поля. Потенциальными считаются поля, работа сил которых не зависит от траектории движения тела в поле. Соответственно силы этих полей называют консер­вативными. В случае, если работа сил зависит от формы пути или силы зависят от скорости движения, механиче­ская энергия системы не сохраняется. Например, силы тре­ния, которые не являются консервативными, присутствуют во всех случаях. Следовательно, закон сохранения механи-


ческой энергии имеет смысл лишь применительно к идеа­лизированным ситуациям. Не следует в связи с этим удив­ляться и делать поспешные выводы типа: «Надо было столько морочить голову каким-то законом, который прак­тически не существует вовсе?» Во-первых, это замечание несправедливо, потому что существует множество явлений, которые допускают при их анализе подобную идеализа­цию. В этих случаях закон сохранения механической энер­гии может быть использован с достаточно хорошей степе­нью точности, разумеется, в малые временные интервалы, когда трение в расчет можно и не принимать. Во-вторых, без установления этого закона было бы очень трудно сде­лать следующий шаг: выяснить, куда же растрачивается механическая энергия при трении?

Другое дело — попытаться обмануть природу настоль­ко, чтобы создать машину, с помощью которой можно было бы совершать работу без затраты энергии в той или иной форме. Это проблема создания вечного двигателя — «пер­петуум-мобиле». История развития человеческого обще­ства особой страницей содержит в себе те, в общем-то, немногочисленные варианты вечных двигателей, свиде­тельствующих о невероятных ухищрениях человеческого ума. Первый до сих пор известный достоверный документ об «осуществлении» идеи вечного двигателя относится к ХIII веку. Еще до установления закона сохранения энер­гии в 1775 году было сделано заявление французской Ака­демии, в котором говорилось о невозможности создания веч­ного двигателя. Вследствие чего Академия отказывалась принимать впредь подобные проекты для рассмотрения.

Итак, механическая энергия при трении растрачивает­ся, но куда? Выяснение энергетической стороны таких про­цессов и составило следующую важную страницу в истории открытий превращения механической энергии в другие формы движения.





Дата публикования: 2015-02-28; Прочитано: 478 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...