Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определение поля



Полем называют коммутативное кольцо с единицей, в котором каждый ненулевой элемент имеет мультипликативный обратный элемент (т.е. обратный по умножению).

Другими словами, полем называют множество, которое является аддитивной абелевой группой; ненулевые же элементы этого множества образуют мультипликативную абелевую группу, и выполняется закон дистрибутивности.

По аналогии с группами число элементов поля называется порядком поля. Поля, порядки которых конечны, называются конечными полями. Конечные поля имеют наибольшее значение в теории кодирования.

Отметим некоторые свойства полей, вытекающие из их определения.

1. Для любого элемента поля .

2. Для ненулевых элементов и поля .

3. Для любых элементов и поля .

4. Если и , то .

ГАЛУА ПОЛЕ

конечное поле,- поле, число элементов к-рого конечно. Г. п. впервые рассматривалось Э. Галуа (Е. Galois, см. [1], с. 35 - 47).

Число элементов любого Г. п. есть степень нек-рого натурального простого числа , являющегося характеристикой этого поля. Для любого натурального простого р и любого натурального псуществует (и единственно, с точностью до изоморфизма) поле из элементов. Оно обозначается или . Поле содержит в качестве подполя поле в том и только в том случае, когда тделится на п. В частности, в любом поле содержится поле , наз. простым полем характеристики р. Поле изоморфно полю классов вычетов кольца целых чисел по простому модулю р. В любом фиксированном алгебраическом замыкании поля существует точно одно подполе для каждого п. Соответствие является изоморфизмом между решеткой натуральных чисел относительно делимости и решеткой конечных алгебраич. расширений поля , лежащих в , относительно включения. Такова же решетка множества конечных алгебраич. расширений любого Г. п., лежащих в его фиксированном алгебраич. замыкании.

Алгебраич. расширение является простым, т. е. существует примитивный элемент такой, что Таким будет любой корень каждого неприводимого многочлена степени пиз кольца . Число примитивных элементов расширения равно

где - Мёбиуса функция. Аддитивная группа поля естественным образом наделяется структурой n-мерного векторного пространства над . В качестве базиса можно взять . Ненулевые элементы поля образуют мультипликативную группу порядка , т. е. каждый элемент из является корнем многочлена

Группа циклическая, ее образующие - первообразные корни из единицы степени число К-рых равно где - Эйлера функция. Каждый первообразный корень из единицы степени является примитивным элементом расширения но не наоборот. Точнее, среди

неприводимых унитарных многочленов степени пнад имеется таких, корни к-рых будут образующими для .





Дата публикования: 2015-01-26; Прочитано: 473 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...