Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Опытное доказательство МКТ (молекулярно-кинетической теории), опыты Штерна и Ламмерта



МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ – раздел молекулярной физики, изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами), из которых состоит вещество. Считается, что частицы вещества находятся в непрерывном, беспорядочном движении и это их движение воспринимается как тепло.

Молекулы газа даже в равновесии движутся беспорядочно, сталкиваясь между собой и со стенкой сосуда, беспрерывно меняя свою скорость. Это означает, что в каждый момент времени в газе есть молекулы, которые имеют самые различные скорости. Вместе с тем, поскольку давление и температура в газе остаются постоянными, то, как бы не менялась скорость молекул, среднее значение ее квадрата остается постоянным. Это оказывается возможным лишь при наличии неизменного во времени и одинакового во всех частях сосуда распределения молекул по скоростям.

Закона распределения скоростей молекул. Первый прибор для этих целей, состоявший из двух коаксиальных цилиндров, был сконструирован немецким физиком Штерном. По оси прибора была натянута нагреваемая электрическим током платиновая нить, с поверхности которого испарялись атомы серебра. В условиях созданного внутри прибора вакуума узкий пучок этих атомов, движущихся в радиальном направлении, проходил через продольную щель на поверхности внутреннего цилиндра и оседал в виде узкой вертикальной полоски на поверхности внешнего цилиндра. Если привести весь прибор во вращение, то за время, пока атомы серебра пролетают зазор между цилиндрами, прибор успевает повернуться на некоторый угол и положение следа от пучка на внешнем цилиндре сместится относительно первоначального. Нетрудно установить связь этого смещения с величиной скорости в пучке молекул и угловой скоростью вращения прибора. Исследования профиля следа, который размывается из-за наличия распределения скоростей в пучке, позволило установить качественную картину этого распределения, которое примерно соответствовало максвелловскому.

О. Штерн в 1920 г., воспользовавшись методом молекулярных пучков, изобретенным французским физиком Луи Дюнойе (1911 г.) измерил скорость газовых молекул и на опыте подтвердил полученное Д. Максвеллом распределение молекул газа по скоростям. (Результаты опыта Штерна подтвердили правильность оценки средней скорости атомов, которая вытекает из распределения Максвелла. О характере самого распределения этот опыт мог дать лишь весьма приближенные сведения.

Более точно закон распределения был проверен в опытах Ламмерта (1929 г.), в которых молекулярный пучок пропускался через два вращающихся диска с радиальными щелями, смещенными относительно друг друга на некоторый угол. Меняя скорость вращения прибора или угол между щелями, можно выделить из пучка молекулы, обладающими различными значениями скорости. Результаты опытов Ламмерта и других исследований, предпринимавшихся с той же целью, находятся в полном соответствии с теоретическим законом распределения скоростей молекул Максвелла.)

Вероятность случайного события и распределение скоростей молекул. Функции распределения Максвелла по скоростям. Графики функции распределения Максвелла по скоростям, их поведение в зависимости от температуры и массы молекул идеального газа.

При выводе основного уравнения молекулярно-кинетической теории молекулам задавали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и направлению. Однако из-за хаотического движения молекул все направления движения являются равновероятными, т. е. в любом направлении в среднем движется одинаковое число молекул.

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой т0 в газе, находящемся в состоянии равновесия при Т= const. остается постоянной и равной

Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Этот закон теоретически выведен Дж. Максвеллом.

При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда

Применяя методы теории вероятностей. Максвелл нашел функцию f(v) — закон о распределения молекул идеального газа по скоростям:

(1)

Из (1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).

График функции (1) приведен на рис. 65. Так как при возрастании v множитель exp[–m0v2/(2kT)] уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vB, и затем асимптотически стремится к нулю. Кривая несимметрична относительно vB.

Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь заштрихованной полоски на рис. 65. Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это означает, что функция f(v) удовлетворяет условию нормировки

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью. Значение наиболее вероятной скорости можно найти продифференцировав выражение (1) (постоянные множители опускаем) по аргументу v, приравняв результат нулю и используя условие для максимума выражения f(v):

Значения v=0 и v=¥ соответствуют минимумам выражения (1), а значение v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vB:

(2)

Из формулы (2) следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 66) сместится вправо (значение наиболее вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться.

Средняя скорость молекулы <v> (средняя арифметическая скорость) определяется по формуле

Подставляя сюда f(v) и интегрируя, получаем (3)

Скорости, характеризующие состояние газа: 1) наиболее вероятная 2) средняя 3) средняя квадратичная (рис. 65). Исходя из распределения молекул по скоростям

(4)

можно найти распределение молекул газа по значениям кинетической энергии e. Для этого перейдем от переменной v к переменной e=m0v2/2. Подставив в (4), получим

где dN(e) — число молекул, имеющих кинетическую энергию поступательного движения, заключенную в интервале от e до e + de.

Таким образом, функция распределения молекул по энергиям теплового движения

Средняя кинетическая энергия <e> молекулы идеального газа

35. Скорости движения молекул: наиболее вероятная, среднеарифметическая, среднеквадратичная, их определения с помощью функции распределения Максвелла.





Дата публикования: 2015-01-26; Прочитано: 1521 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...