![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Первообразной или примитивной функцией (иногда называют также антипроизводной) данной функции f называют такую F, производная которой (на всей области определения) равна f, то есть F ′ = f. Вычисление первообразной заключается в нахождении неопределённого интеграла, а сам процесс называется интегрированием.
Так, например, функция является первообразной
. Так как производная константы равна нулю,
будет иметь бесконечное количество первообразных; таких как
или
… и т. д.; таким образом семейство первообразных функции x2 можно обозначить как F(x) = x3 / 3 + C, где C — любое число. Графики таких первообразных смещены вертикально относительно друг друга, и их положение зависит от значения C.
Первообразные важны тем, что позволяют вычислять интегралы. Если F — первообразная интегрируемой функции f, то:
Это соотношение называется формулой Ньютона — Лейбница.
Благодаря этой связи множество первообразных данной функции f называют неопределённым интегралом (общим интегралом) f и записывают в виде интеграла без указания пределов:
Если F — первообразная f, и функция f определена на каком-либо интервале, тогда каждая последующая первообразная G отличается от F на константу: всегда существует число C, такое что G(x) =F(x) + C для всех x. Число C называют постоянной интегрирования.
Каждая непрерывная функция f имеет первообразную F, одна из которых представляется в виде интеграла от f с переменным верхним пределом:
Также существуют не непрерывные (разрывные) функции, которые имеют первообразную. Например, с f(0) = 0 не непрерывна при x = 0, но имеет первообразную
с F(0) = 0.
Некоторые первообразные, даже несмотря на то, что они существуют, не могут быть выражены через элементарные функции (такие как многочлены, экспоненциальные функции, логарифмы, тригонометрические функции, обратные тригонометрические функции и их комбинации). Например:
Более развёрнутое изложение этих фактов см. в дифференциальной теории Галуа.
Дата публикования: 2015-01-25; Прочитано: 281 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!