Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Легирование полупроводника примесями проводится с целью создания различных приборных структур за счет изменения его электрофизических свойств: типа электропроводности, удельного сопротивления и других характеристик.
Большое число регулирующих параметров процесса ионного легирования (доза, тип, энергия ионов, температура и среда отжига и др.) позволяют в широких пределах изменять свойства легированных слоев, но наряду с этим требуют глубокого физического понимания процессов внедрения ионов, их поведения в кристаллической решетке, кинетики образования и устранения радиационных дефектов, что необходимо для высококачественного технологического моделирования в конечном итоге эффективной реализации приборных структур и схем в интегральном исполнении.
1. Физические особенности процесса ионного легирования
Процесс ионного легирования полупроводника включает две основных операции: собственно внедрение (имплантацию) ионов примеси и отжиг радиационных дефектов.
Ионная имплантация – процесс внедрения в твердотельную подложку ионизированных атомов с энергией достаточной для проникновения их в приповерхностные области подложки (от кило- до мегаэлектронвольт).
Наиболее общим применением ионной имплантации является процесс ионного легирования материалов, так как технология ионной имплантации позволяет с высокой точностью управлять количеством легирующей примеси. Ионная имплантация характеризуется универсальностью и гибкостью процесса, что позволяет получать необходимые концентрации примеси в случаях, когда другие методы неприемлемы (легирование бором и фосфором в алмазах). Маски при данном методе легирования могут быть изготовлены из фоторезистов, окислов, нитридов, поликристаллического кремния и др. Процесс ионной имплантации может осуществляться при низких температурах (вплоть до комнатных), благодаря чему сохраняются исходные электрофизические свойства кристаллов.
После имплантации производят отжиг, задача которого – устранить радиационные нарушения и обеспечить электрическую активацию внедренных атомов.
2. Анализ влияния технологических параметров на процесс ионной имплантации
На процесс ионной имплантации влияют различные факторы такие как масса и энергия ионов, дозы облучения, материал мишени, её температура и кристаллическая ориентация, наличия на её поверхности загрязнений и т.п.
2.1 Распределение внедренных примесных атомов
При имплантации используются три вида материалов: аморфные, поли- и монокристаллические. Аморфные и поликристаллические материалы служат в качестве масок при имплантации ионов. В монокристаллических материалах создаются структуры с заданным профилем концентрации примесей.
При внедрении в мишень быстрые ионы в результате столкновений с атомными ядрами и электронами теряют свою энергию и останавливаются. Длина пути ионов от поверхности мишени до точки внедрения называется длиной пробега, а её проекция на направления первоначального движения – проекцией пробега, которая является экспериментально определяемой величиной.
2.2 Радиационные дефекты
При облучении твердых тел ионами, так же как и быстрыми частицами (нейтронами, протонами, электронами), образуются радиационные дефекты. Это могут быть либо точечные дефекты (вакансии и атомы в межузлиях, комплексы), либо их скопления, либо линейные и плоскостные дефекты типа дислокаций и дефектов упаковки. Интересным специфическим явлениям при облучении ионами является аморфизация полупроводника, т.е. полное разупорядочение структуры. От наличия дефектов и их концентрации зависят многие свойства полупроводника. Поэтому изучения закономерностей образования дефектов и их отжига важно для понимания процесса имплантации, а также для правильного использования этого метода в практике.
2.3 Отжиг радиационных дефектов
Исследования процесса отжига имплантированных структур приводит к выводу о том, что влияния отжига на аморфные слои и на точечные и линейные радиационные дефекты различно.
Одной из основных проблем технологии ионного легирования является определение минимальных температуры и времени отжига, необходимых для полной активации доноров и акцепторов при условии полного устранения остаточных дефектов.
Дата публикования: 2015-02-03; Прочитано: 1113 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!