Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Другие вейвлеты



Мы, конечно, можем не остановиться на этом, и потребовать устранения параболической составляющей (момент 2-го порядка) и так далее. В результате получим вейвлеты D6, D8 и другие.

Чтобы не считать всё вручную, коэффициенты можно посмотреть в википедии.

Добеши открыла весьма интересный способ получения коэффициентов этих преобразований, но увы, это уже выходит за рамки нашей статьи.


31.Фильтрация контуров. Оператор Кэни.

Отдельный класс фильтров — фильтрация границ и контуров. Контуры очень полезны, когда мы хотим перейти от работы с изображением к работе с объектами на этом изображении. Когда объект достаточно сложный, но хорошо выделяемый, то зачастую единственным способом работы с ним является выделение его контуров. Существует целый ряд алгоритмов, решающих задачу фильтрации контуров:

· Оператор Кэнни

· Оператор Собеля

· Оператор Лапласа

· Оператор Прюитт

· Оператор Робертса


Чаще всего используется именно Кэнни, который хорошо работает и реализация которого есть в OpenCV (Собель там тоже есть, но он хуже ищёт контуры).

Оператор Кэнни (детектор границ Кэнни, алгоритм Кэнни; часто в другой транскрипции - Канну) в дисциплине компьютерного зрения — оператор обнаружения границ изображения. Был разработан в 1986 году Джоном Кэнни (англ. John F. Canny) и использует многоступенчатый алгоритм для обнаружения широкого спектра границ в изображениях.

Кэнни изучил математическую проблему получения фильтра, оптимального по критериям выделения, локализации и минимизации нескольких откликов одного края. Он показал, что искомый фильтр является суммой четырёх экспонент. Он также показал, что этот фильтр может быть хорошо приближен первой производной Гауссианы. Кэнни ввёл понятие подавления немаксимумов (англ. Non-Maximum Suppression, которое означает, что пикселями границ объявляются пиксели, в которых достигается локальный максимум градиента в направлении вектора градиента.

Хотя его работа была проведена на заре компьютерного зрения, детектор границ Кэнни до сих пор является одним из лучших детекторов. Кроме особенных частных случаев трудно найти детектор, который бы работал существенно лучше, чем детектор Кэнни.

Удаление слабых границ
Для чего используются два порога?
1. Чтобы уменьшить влияние шума для инициализации кривой, используем верхний порог;
2. Чтобы «не потерять хвост», используем нижний порог при прослеживании.

Поиск локальных максимумов
Проверяя, является ли пиксель локальным максимумом вдоль направления градиента, приходится интерполировать «нецелые» пиксели p и r

Целью Кэнни было разработать оптимальный алгоритм обнаружения границ, удовлетворяющий трём критериям:

· хорошее обнаружение (Канни трактовал это свойство как повышение отношения сигнал/шум);

· хорошая локализация (правильное определение положения границы);

· единственный отклик на одну границу.

Из этих критериев затем строилась целевая функция стоимости ошибок, минимизацией которой находится «оптимальный» линейный оператор для свёртки с изображением.

Алгоритм детектора границ не ограничивается вычислением градиента сглаженного изображения. В контуре границы оставляются только точки максимума градиента изображения, а не максимальные точки, лежащие рядом с границей, удаляются. Здесь также используется информация о направлении границы для того, чтобы удалять точки именно рядом с границей и не разрывать саму границу вблизи локальных максимумов градиента. Затем с помощью двух порогов удаляются слабые границы. Фрагмент границы при этом обрабатывается как целое. Если значение градиента где-нибудь на прослеживаемом фрагменте превысит верхний порог, то этот фрагмент остается также «допустимой» границей и в тех местах, где значение градиента падает ниже этого порога, до тех пор пока она не станет ниже нижнего порога. Если же на всем фрагменте нет ни одной точки со значением большим верхнего порога, то он удаляется. Такой гистерезис позволяет снизить число разрывов в выходных границах. Включение в алгоритм Кэнни шумоподавления с одной стороны повышает устойчивость результатов, а с другой — увеличивает вычислительные затраты и приводит к искажению и даже потере подробностей границ. Так, например, таким алгоритмом скругляются углы объектов и разрушаются границы в точках соединений.

Основные этапы алгоритма

Сглаживание. Размытие изображения для удаления шума. Оператор Кэнни использует фильтр который может быть хорошо приближен к первой производной гауссианы. = 1.4:

Поиск градиентов. Границы отмечаются там, где градиент изображения приобретает максимальное значение. Они могут иметь различное направление, поэтому алгоритм Кэнни использует четыре фильтра для обнаружения горизонтальных, вертикальных и диагональных ребер в размытом изображении.

Угол направления вектора градиента округляется и может принимать такие значения: 0, 45, 90, 135.

Направление градиента

Подавление немаксимумов. Только локальные максимумы отмечаются как границы.

Двойная пороговая фильтрация. Потенциальные границы определяются порогами.

Трассировка области неоднозначности. Итоговые границы определяются путём подавления всех краёв, несвязанных с определенными (сильными) границами.

Перед применением детектора, обычно преобразуют изображение в оттенки серого, чтобы уменьшить вычислительные затраты. Этот этап характерен для многих методов обработки изображений.





Дата публикования: 2015-02-03; Прочитано: 549 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...