Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Преобразование Хаара



Итак, наша цель — преобразовать изображение так, чтобы оно хорошо сжималось классическими алгоритмами. Подумаем, как нужно изменить его, чтобы получить длинные цепочки нулей.

У «реальных» изображений, таких как фотографии, есть одна особенность — яркость соседних пикселей обычно отличается на небольшую величину. В самом деле, в мире редко можно увидеть резкие, контрастные перепады яркости. А если они и есть, то занимают лишь малую часть изображения.

Рассмотрим фрагмент первой строки яркостей из известного изображения «Lenna» (на рисунке).


154, 155, 156, 157, 157, 157, 158, 156

Видно, что соседние числа очень близки. Чтобы получить желаемые нули или хотя бы что-то близкое к ним, можно закодировать отдельно первое число, а потом рассматривать лишь отличия каждого числа от предыдущего.

Получаем:


154, 1, 1, 1, 0, 0, 1, -2.

Уже лучше! Такой метод в самом деле используется и называется дельта-кодированием. Но у него есть серьёзные недостаток — он нелокальный. То есть нельзя взять кусочек последовательности и узнать, какие именно яркости в нём закодированы без декодирования всех значений перед этим кусочком.

Попробуем поступить иначе. Не будем пытаться сразу получить хорошую последовательность, попробуем улучшить её хотя бы немного.

Для этого разобьём все числа на пары и найдём полусуммы и полуразности значений в каждой из них.


(154, 155), (156, 157), (157, 157), (158, 156) (154.5, 0.5), (156.5, 0.5), (157, 0.0), (157, -1.0)

Почему именно полусуммы и полуразности? А всё очень просто! Полусумма — это среднее значение яркости пары пикселей. А полуразность несёт в себе информацию об отличиях между значениями в паре. Очевидно, зная полусумму a и полуразность d можно найти и сами значения:
первое значение в паре = a — d,
второе значение в паре = a + d.

Это преобразование было предложено в 1909 году Альфредом Хааром и носит его имя.


А где же сжатие?

Полученные числа можно перегруппировать по принципу «мухи отдельно, котлеты отдельно», разделив полусуммы и полуразности:


154.5, 156.5, 157, 157; 0.5, 0.5, 0.0, -1.0.

Числа во второй половине последовательности как правило будут небольшими (то, что они не целые, пусть пока не смущает). Почему так?

Как мы уже выяснили раньше, в реальных изображениях соседние пиксели редко отличаются друг от друга значительно. Если значение одного велико, то и другого велико. В таких случаях говорят, что соседние пиксели коррелированы.

В самом деле, рассмотрим первые 2000 пар соседних пикселей и каждую пару представим на графике точкой.

Все точки выстраиваются вдоль одной прямой линии. И так практически во всех реальных изображениях. Верхний левый и нижний правый углы изображения практически всегда пусты.

А теперь рассмотрим график, точками в котором будут полусуммы и полуразности.

Видно, что полуразности находятся в гораздо более узком диапазоне значений. А это значит, что на них можно потратить меньше одного байта. Какое-никакое, а сжатие.


Применим математику!

Попробуем записать математические выражения, описывающие преобразование Хаара.

Итак, у нас была пара пикселей (вектор) , а мы хотим получить пару .

Такое преобразование описывается матрицей .

В самом деле , что нам и требовалось.

Внимательный читатель наверняка заметил, что рисунки из точек на двух последних графиках одинаковы. Разница лишь в повороте на угол в 45°.

В математике повороты и растяжения называются аффинными преобразованиями и описываются как раз при помощи умножения матрицы на вектор. Что мы и получили выше. То есть, преобразование Хаара — это просто поворот точек таким образом, чтобы их можно было удобно и компактно закодировать.

Правда, тут есть один нюанс. При аффинных преобразованиях может меняться площадь фигуры. Не то, чтобы это было плохо, но как-то неаккуратненько. Как известно, коэффициент изменения площади равен определителю матрицы. Посмотрим, каков он для преобразования Хаара.

Для того, чтобы определитель стал равен единице достаточно умножить каждый элемент матрицы на . На угол поворота (а значит, и на «сжимающую способность» преобразования) это не повлияет.

Получаем в итоге матрицу


А как декодировать?

Как известно, если у матрицы определитель не равен нулю, то для неё существует обратная матрица, «отменяющая» её действие. Если мы найдём обратную матрицу для H, то декодирование будет заключаться просто в умножении векторов с полусуммами и полуразностями на неё.

Вообще говоря, поиск обратной матрицы — не такая простая задача. Но, может, удастся как-то эту задачу упростить?

Рассмотрим поближе нашу матрицу. Она состоит из двух вектор-строк: и . Назовём их v1 и v2.

Они обладают интересными свойствами.

Во-первых, их длины равны 1, то есть . Здесь буква T означает транспонирование. Умножение вектор-строки на транспонированный вектор-строку — это скалярное произведение.

Во-вторых, они ортогональны, то есть .

Матрица, строки которой обладают указанными свойствами называется ортогональной. Чрезвычайно важным свойством таких матриц является то, что обратную матрицу для них можно получить простым транспонированием.

В справедливости этого выражения можно убедиться умножив H обратную матрицу. На диагонали мы получим скалярные произведения вектор-строк на самих себя, то есть 1. А вне диагоналей — скалярные произведения вектор-строк друг на друга, то есть 0. В итоге произведение будет равно единичной матрице.

Мы любим ортогональные матрицы!






Дата публикования: 2015-02-03; Прочитано: 548 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...