Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Передача наследственной информации при бесполом размножении. Митотический цикл. Фазы митоза. Амитоз. Эндомитоз



Бесполое размножение происходит без образования гамет, в нем участвует лишь один организм. При бесполом размножении обычно образуются идентичные потомки, а единственным источником генетической изменчивости служат случайные мутации. Генетическая изменчивость выгодна виду, потому что она является поставщиком «сырья» для естественного отбора, а значит, и для эволюции.

Для бесполого размножения характерно то, что в процессе не участвует мейоз (исключение составляют растительные организмы с чередованием поколений), и потомки идентичны родительской особи. Такое идентичное потомство, которое происходит от одной родительской особи, называют клоном. Члены одного клона могут быть генетически различными, только когда возникают случайные мутации. Высшие животные не способны к бесполому размножению, однако в последнее время было сделано несколько успешных попыток клонировать некоторые виды искусственным образом.
Существует несколько типов бесполого развития.

Первый тип - это деление. Делением размножаются одноклеточные организмы: каждая особь при этом делится на две или большее число клеток, которые называются дочерними, они идентичны родительской клетке. Перед делением клетки происходит репликация ДНК, а у эукариот - деление и ядра. В большинстве случаев происходит бинарное деление, при котором образуются две идентичные клетки. Таким образом делятся бактерии, многие простейшие, например амеба, и некоторые одноклеточные водоросли, например эвглена. При подходящих условиях это приводит к быстрому росту популяции. Множественное деление, при котором следом за рядом повторных делений клеточного ядра происходит деление самой клетки на огромное множество дочерних клеток, можно наблюдать у споровиков - это группа простейших, и к ним относится, например, возбудитель малярии Plasmodium. Стадия, на которой происходит множественное деление, называется шизонтом, а сам этот процесс - шизогонией. У Plasmodium шизогония следует за заражением хозяина, когда паразит проникает в печень. В результате этого получается сразу около тысячи дочерних клеток, каждая из которых способна инвазировать эритроцит и произвести путем шизогонии еще 24 дочерние клетки. Такая высокая плодовитость компенсирует большие потери из-за трудностей успешной передачи паразита отдельного хозяина другому, а именно от человека организму-переносчику, т. е. малярийному комару, и в обратном направлении

Второй тип бесполого размножения - это образование спор, или споруляция.
Спора - это одноклеточная репродуктивная единица обычно микроскопических размеров, состоящая из небольшого количества цитоплазмы и ядра. Образование спор можно наблюдать у бактерий, простейших, у представителей всех групп зеленых растений и всех групп грибов. Споры могут быть различными по своему типу и функции и часто образуются в специальных структурах. Например, у Rhiropus и Dryoptenis споры образуются в спорангиях; микроспоры (или пальцевые зерна) или мегаспоры (или зародышевые мешки) семенных растений образуются в особых спораниях, которые носят названия «пыльцевой мешок» и «семязачаток». Очень часто споры образуются в больших количествах, но они имеют ничтожный вес, и это облегчает их распространение ветром, а также животными, но главным образом - насекомыми. Из-за своих маленьких размеров спора обычно содержит лишь минимальные запасы питательных веществ; из-за того, что многие споры не попадают в подходящее место для прорастания, их потери очень велики.

Главное достоинство таких спор заключается в возможности быстрого размножения и расселения видов, в особенности это касается грибов.
Споры бактерий служат не для размножения, а для того, чтобы выжить при неблагоприятных условиях, потому что каждая бактерия образует только одну спору. Бактериальные споры относятся к числу наиболее устойчивых спор. Так, например, они очень часто выдерживают обработку сильными дезинфицирующими средствами и кипячением в воде. Важно отметить, что один организм может производить споры более чем одного типа; например, Rhiropus образует половые и бесполовые споры, а высшие растения производят бесполым путем микроспоры и мегаспоры

Третий тип бесполого размножения - это почкование. Почкованием называют одну из форм бесполого размножения, при которой новая особь образуется в виде выроста (или почки) на теле родительской особи, а затем отделяется от нее, при этом превращаясь в самостоятельный организм, который совершенно идентичен родительскому организму. Почкование встречается у различных групп организмов, особенно у кишечнополостных, например у гидры, и у одноклеточных грибов, таких, как дрожжи. В последнем случае почкование отличается от делений (которые тоже наблюдаются у дрожжей) тем, что две образующиеся части имеют разные размеры. Необычная форма почкования описана у суккулентного растения Bryophyllum - ксерофита, часто выращиваемого в качестве декоративного комнатного растения: по краям его листьев развиваются маленькие, миниатюрные растеньица, снабженные крошечными корешками; эти так называемые «почки» в конце концов отпадают и начинают существовать как самостоятельные растения.

Четвертый тип бесполого размножения - размножение фрагментами, или фрагментация. Фрагментацией называют разделение особи на две или несколько частей, каждая из которых растет и образует новую особь. Фрагментация происходит, например, у нитчатых водорослей, таких, как спирогира. Нить спирогиры может разорваться на две части в любом месте. Фрагментация наблюдается также у некоторых низших животных, которые, в отличие от более организованных форм, сохраняют значительную способность к регенерации из относительно слабо регенерированных клеток. Например, тело намертин (это группа примитивных червей, главным образом - морских) особенно легко разрывается на много частей, каждая из которых может дать в результате регенерации новую особь. В этом случае регенерация - это процесс нормальный и регулируемый; но, несмотря на это, у некоторых животных (например, у морских звезд) восстановление из отдельных частей происходит только после случайной фрагментации. Животные, способные к регенерации, служат объектами для экспериментального изучения этого процесса; часто при этом используют свободно живущего червя планарию.

Пятый тип бесполого размножения - вегетативное. Вегетативное размножение представляет собой одну из форм бесполого размножения, при котором от растения отделяется относительно большая, обычно дифференцированная, часть и развивается в самостоятельное растение. По существу, вегетативное размножение сходно с почкованием. Нередко растения образуют структуры, специально предназначенные для этой цели: луковицы, клубне-луковицы, корневища, столоны и клубни. Некоторые из этих структур служат также для запасания питательных веществ, что позволяет растению переживать зиму и давать в следующем году цветки и плоды (это двулетние растения) или выживать в течение ряда лет (это многолетние растения). К таким органам, они называются зимующие, относятся луковицы, клубне-луковицы, корневища и клубни.
Зимующими органами могут быть также стебли, корни или целые побеги (почки): во всех случаях содержащиеся в них питательные вещества создаются главным образом в процессе фотосинтеза, происходящего в листьях текущего года. Образовавшиеся питательные вещества переносят в запасающий орган, а затем обычно превращаются в резервный материал, например в крахмал. При наступлении неблагоприятных условий подземные части растений отмирают, а подземный зимующий орган переходит в состояние покоя. В начале следующего вегетативного периода запасы питательных веществ мобилизуются с помощью ферментов: почки пробуждаются и в них начинаются процессы активного роста и развития за счет запасенных питательных веществ. Если прорастает больше одной почки, то можно считать, что размножение осуществилось. Последовательность этих событий очень тесно связана со сменой времен года, потому что она регулируется такими внешними факторами, как длина светового дня (это фотопериод) и температура. Глубокое влияние этих факторов на рост и развитие было давно доказано.

Луковица - это видоизмененный побег, имеющийся, например, у лука (Allium), нарцисса (Narcissus) и тюльпана (Tulipa). Она служит как зимующим органом, так и органом вегетативного размножения. Луковица состоит из очень короткого стебля и мясистых листьев, содержащих запасные питательные вещества. Снаружи она покрыта бурыми пленчатыми листьями - остатками прошлогодних листьев, запасные вещества которых были израсходованы. Луковица содержит одну или несколько дочерних луковиц (это детки, или зубки); каждая из них может образовать побег, который к концу вегетативного периода дает новую луковицу, и если их будет несколько, то это уже вегетативное размножение. Корни у луковиц придаточные, т. е. отходят непосредственно от стебля, а главного корня нет.

Клубнелуковица - это короткий, вздутый вертикальный подземный стебель, как, например, у шафрана (Crocus) или гладиолуса (Gladiolus). Клубнелуковицы служат как запасающими органами, так и органами вегетативного размножения.
Клубнелуковица состоит из вздутого основания стебля, окруженного защитными пленчатыми листьями; в отличие от луковицы, здесь нет мясистых листьев. Пленчатые листья - это остатки прошлогодних подземных листьев, корни придаточные. К концу вегетативного периода они укорачиваются и втягивают новую клубнелуковицу в почву. Клубнелуковица (как и луковица) содержит одну или несколько деток, которые могут обеспечить вегетативное размножение.

Корневище - представляет собой подземный стебель, растущий горизонтально. У одних растений, например у ириса и соломоновой печати (Polygonatum), корневище короткое и вздутое, содержащее запасные питательные вещества, а у других, таких, как пырей ползучий (Apropyron repens), мята (Mentha) и астры (Aster spp.), оно длинное и тонкое. Корневища обычно служат зимующим органом, а также органом вегетативного размножения. Корневище несет листья, почки и придаточные корни. Листья могут быть либо пленчатые, либо чешуйчатые (мелкие, тонкие, беловатого или коричневатого цвета), как у пырея, либо только зеленые, надземные, как у ириса, либо того и другого типа, как, например, у соломоновой печати, у которой листья обоих типов растут и на подземных побегах.

Столон - это ползучий горизонтальный стебель, стелющийся на поверхности почвы, как, например, у ежевики (Rubus), крыжовника (Grossulania), черной и красной смородины (Ribes Spp.). Столон не служит зимующим органом. Корни у него придаточные, отходящие от узлов.

Усы (или плети) - это разновидность столонов, которые быстро растут в длину, например у земляники (Aragaria) или у лютика ползучего (Ranunculus repens). Ус несет пленчатые листья с пазушными почками, которые дают начало придаточным корням и новым растениям. После укоренения новых растений прежние усы в конце концов разрушаются. Ус может также расти от одной из нижних пазушных почек на главном стебле. У земляники пленчатые листья и пазушные почки есть у каждого узла, но корни и надземные листья образует лишь каждый второй узел. Все пазушные почки могут дать начало новым усам.

Клубень - это подземный запасающий орган, раздутый в результате накопления питательных веществ и способный перезимовать. Клубни живут только один год, а затем, после того как их содержимое будет использовано за время вегетативного периода, они ссыхаются. К концу вегетативного периода образуются новые клубни, но они возникают не из старых клубней (в отличие от клубнелуковиц, возникающих из прежних клубнелуковиц).

Стеблевые клубни представляют собой структуры, образующиеся на концах тонких корневищ, как у картофеля (Solanum tuberosum). На их стеблевое происхождение указывает наличие пленчатых листьев и почек в их пазухах. В следующем вегетативном периоде каждая такая почка может дать начало новому растению.
Корневые клубни - это вздувшиеся придаточные корни, как, например, у иормины (Dahlia) и у Ranunculus ficaria. Новые растения развиваются из пазушных почек у основания старого стебля. Мясистые стержневые корни. Стержневой корень - это главный корень, развивающийся из первичного корешка. Корневая система стержневого типа характерна для двудольных растений. У некоторых растений, таких, как морковь (Daucus), пастернак (Pastinaca), брюква (Brassica napus), репа (Brassica rapa) и редька (Raphanus sativus), главный корень может утолщаться за счет развития паренхимной ткани, содержащей запасные питательные вещества. Вместе с почками, расположенными у основания старого стебля непосредственно над стержневым корневым, такие корни образуют зимующие органы и органы вегетативного размножения. Мясистые стержневые корни двух типов в основном рассматриваются на таких растениях, как морковь и репа.
Мясистые стержневые корни характерны для двулетних растений, у которых в первый год происходит вегетативный рост. Затем они переживают зиму за счет подземного запасающего органа, а на второй год образуются цветки и семена - и к концу года отмирают.

Помимо описанных выше специализированных органов вегетативного размножения, новые растения могут регенерировать и некоторые другие, неспециализированные органы, если отделить их от родительского растения, например листья суккулента Sedum. Одной из форм вегетативного размножения можно также считать размножение черенками или отводками, применяемое в плодоводстве и цветоводстве.

Черенки и отводки - это части растения, в подходящих условиях пускающие корни и образующие листья, превращаясь в самостоятельные растения. Таким образом можно искусственно размножить нужные сорта, которые при этом не изменяются. Нередко укоренение стимулируют добавлением ростового гормона. Для вегетативного размножения с успехом используют побеги пеларгонии и колеуса, веточки ивы (Salix Spp.) и Forsythia, а также листья бегонии и узамбарской фиалки (Saintpaulia ionantha).
Другим важным и широко используемым способом искусственного вегетативного размножения служат прививки. Прививка состоит в пересадке одного растения (побега или почки) на нижнюю часть побега другого растения. Пересаженную часть растения-донора называют привоем, а реципиента - подвоем. Подвой обрезают над местом прививки. Получающееся в результате растение обычно обладает корневой системой подвоя и побегом (в том числе цветками и плодами) привоя. Этот метод применяется в широких масштабах для размножения розовых кустов и плодовых деревьев, в особенности - яблонь. Он имеет два преимущества - позволяет сочетать в одном растении желательные признаки двух разных сортов или видов и дает возможность быстро получать в больших количествах новые комбинации: привой/подвой для продажи. Иногда удается получить прививки нескольких привоев на данном подвое; примером служат яблони, у которых на одном дереве вырастают десертные плоды и плоды, предназначенные для варки варенья и консервирования.

Получение идентичных потомков при помощи бесполого размножения называют клонированием.

Митотический цикл, совокупность процессов, в результате которых из одной клетки образуются две новые. М. ц. охватывает период митоза и часть интерфазы. — периода между делениями, когда происходит подготовка к следующему митозу. М. ц. — часть жизненного цикла клетки; в быстро делящихся клеточных популяциях (например, у бластомеров дробящегося яйца) М. ц. почти совпадает с жизненным циклом клетки.

Интерфаза:

- пресинтетического (G1), когда осуществляются синтез специфических белков и другие процессы, подготавливающие клетку к синтезу ДНК;

-синтетического (S), когда синтезируется ДНК;

- постсинтетического, или премитотического (G2).

Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играющие роль в делении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует деление хромосом). Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс деления хромосом более наглядным. Центриоли делятся и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп.

Еще лучше они видны на следующей стадии митоза — метафазе.
В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку — центромеру. Хромосомы своими центромерами прикрепляются у нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.
Следующая стадия деления клетки — телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.

Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.

Весь процесс митоза занимает в среднем 1-2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит он также от условий внешней среды (температуры, светового режима и других показателей).

Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. Все соматические клетки образуются в результате митотического деления, что обеспечивает рост организма. В процессе митоза происходит распределение веществ хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все клетки организма получают одну и ту же генетическую информацию.

Амито́з, или прямо́е деле́ние кле́тки (от др.-греч. ἀ- — частица отрицания и μίτος — «нить») — деление клеток простым разделением ядра надвое.

Впервые он описан немецким биологом Робертом Ремаком в 1841 году, термин предложен гистологом Вальтером Флеммингом в 1882 году. Амитоз — редкое, но иногда необходимое явление. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.).

При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом.

Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Эндомито́з (от лат. эндо... и митоз) — процесс удвоения числа хромосом в ядрах клеток многих протистов, растений и животных [1], за которым не следует деления ядра и самой клетки. В процессе эндомитоза (в отличие от многих форм митоза) не происходит разрушения ядерной оболочки и ядрышка, не происходит образование веретена деления и не реорганизуется цитоплазма, но при этом (как и при митозе) хромосомы проходят циклы спирализации и деспирализации.

Повторные эндомитозы приводят к возникновению полиплоидных ядер, отчего в клетке увеличивается содержание ДНК.

Также эндомитоз ом называют многократное удвоение молекул ДНК в хромосомах без увеличения числа самих хромосом; как результат образуются политенные хромосомы. При этом происходит значительное увеличение количества ДНК в ядрах.

У винограда эндомитоз был обнаружен в кончиках молодых корней сорта «Фоль бланш». По своему происхождению, большинство известных полиплоидных сортов винограда возникло на основе соматических мутаций в результате спонтанного образования полиплоидных клеток путем эндомитоза. При определённых благоприятных условиях эти клетки занимают апикальное положение и, делясь в дальнейшем путём митоза, дают начало полиплоидным побегам на диплоидных кустах. От таких побегов возникли, например, тетраплоидные клоны:

· «Шабаш крупноягодный»,

· «Рислинг крупноягодный»





Дата публикования: 2015-02-03; Прочитано: 4561 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...