Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Табличный метод



При этом способе составляют таблицу значений функции на определённом промежутке изменения аргумента, и если окажется, что для соседних значений аргументов соответствующие значения функции имеют разные знаки, то корень уравнения находится между ними.

Пример: Выясним, сколько корней имеет уравнение на отрезке

Решение: Составим таблицу значений функции на промежутке с шагом изменения аргумента равным 1

−3,0 −2,0 −1,0 0,0 1,0
−14,05 −4,14 1,63 3,00 −0,72

Как видно из таблицы, корни уравнения существуют на отрезках и поскольку значения функции на концах отрезка имеют разные знаки.

№11. Объект изучения теории вероятности – событие.

Под испытанием (опытом) в теории вероятностей принято понимать наблюдение какого-либо явления при соблюдении определенного комплекса условий, который должен каждый раз строго выполняться при повторении данного испытания. Если то же самое явление наблюдается при другом комплексе условий, то это уже другое испытание.

Когда речь идет о соблюдении комплекса условий данного испытания, имеется в виду постоянство значений всех факторов, контролируемых в данном испытании. Но при этом, как правило, имеет место большое число неконтролируемых факторов, которые трудно или невозможно учесть.

Результаты испытаний можно охарактеризовать качественно и количественно.

Качественная характеристика заключается в регистрации какого-либо явления, которое может наблюдаться или не наблюдаться при данном испытании. Любое из этих явлений называется в теории вероятностей событием.

События делятся на:

1. Невозможные (в результате опыта никогда не произойдут),

2. Достоверные (в результате опыта происходят всегда),

3. Случайные (в результате опыта событие может произойти или не произойти).

Теория вероятностей рассматривает именно случайные события. При этом предполагается, что испытание может быть повторено неограниченное (по крайней мере, теоретически) число раз. Например, выполнение штрафного броска в баскетболе есть испытание, а попадание в кольцо — событие.

Другим примером события, часто приводимым в учебниках по теории вероятностей, является выпадение определенного числа очков (от 1 до 6) при бросании игральной кости.

События в теории вероятностей принято обозначать начальными прописными латинскими буквами А, В, С,...

Случайные события называются несовместными если появление одного исключает появление другого. В противном случае они называются совместными.

Если в результате опыта произойдет хоть одно из некой группы событий, то они образуют полную группу. Появление хотя бы одного события из полной группы – достоверное событие.

Если, по условиям испытания нет никаких оснований предполагать, что один из исходов появляется чаще других, то все исходы являются равновозможными.

Два события называются независимыми, если появление одного из них не изменяет вероятности другого.

Количественная характеристика испытания состоит в определении значений некоторых величин, которыми интересуются при данном испытании (например, число подтягиваний на перекладине или время на беговой дистанции). В силу действия большого числа неконтролируемых факторов эти величины могут принимать различные значения в результате испытания. Причем до испытания невозможно предсказать значение величины, поэтому она называется случайной величиной.

Вероятность какого либо события – численное выражение возможности его наступления.

В некоторых простейших случаях вероятности событий могут быть легко определены непосредственно исходя из условий испытаний.

Представим себе общую схему таких испытаний.

Пусть испытание имеет n возможных несовместных исходов, т. е. отдельных событий, могущих появиться в результате данного испытания; причем при каждом повторении испытания возможен один и только один из этих исходов. Кроме того, пусть по условиям испытания, нет никаких оснований предполагать, что один из исходов появляется чаще других, т. е. все исходы являются равновозможными.

Допустим теперь, что при n равновозможных несовместных исходах интерес представляет некоторое событие А, появляющееcя при каждом из m исходов и не появляющееся при остальных nт исходах. Тогда принято говорить, что в данном испытании имеется п случаев, из которых т благоприятствуют появлению события А.

Вероятность события А равна отношению числа исходов, благоприятствующих событию А, к общему числу всех равновозможных несовместных исходов опыта:

Формула представляет собой так называемое классическое определение вероятности по Лапласу, пришедшее из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша.

Статистическое определение вероятности.

Будем фиксировать число испытаний, в результате которых появилось некоторое событие А. Пусть было проведено N испытаний, в результате которых событие А появилось ровно nN раз. Тогда число nN называется частотой события, а отношение — частостью (относительной частотой) события.

Замечательным экспериментальным фактом является то, что частость события при большом числе повторений испытания начинает мало изменяться и стабилизируется около некоторого определенного значения, в то время как при малом числе повторений она принимает различные, совершенно случайные значения. Поэтому интуитивно ясно, что если при неограниченном повторении испытания частость события будет стремиться к вполне определенному числовому значению, то это значение можно принять и качестве объективной характеристики события А. Такое число Р(А), связанное с событием А, называется вероятностью события А.

Математически неограниченное число повторений испытания записывается в виде предела (lim) при N, стремящемся к бесконечности ():

Поскольку nN никогда не может превзойти N, то вероятность оказывается заключенной в интервале

Следует отметить, что приведенное определение вероятности является абстрактным, оно не может быть экспериментально проверено, так как на практике нельзя реализовать бесконечно большое число повторений испытания.

Пусть проводятся независимые испытания, при каждом из которых вероятность события А неизменна. Справедливо утверждение, называемое законом больших чисел или теоремой Бернулли: если N достаточно велико, то с вероятностью сколь угодно близкой к единице, отличие от Р(А) меньше любого наперед заданного положительного числа или, в символьной записи, . Т.е. много раз бросая монету, мы “почти наверняка” будем получать примерно равные частоты выпадения герба и цифры.

№12. Объект изучения математической статистики. Случайная величина.

Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.

Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании).

Математическая статистика — раздел математики, разрабатывающий методы регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений. В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы.

Выделяют описательную статистику, теорию оценивания и теорию проверки гипотез. Описательная статистика есть совокупность эмпирических методов, используемых для визуализации и интерпретации данных (расчет выборочных характеристик, таблицы, диаграммы, графики и т. д.), как правило, не требующих предположений о вероятностной природе данных. Некоторые методы описательной статистики предполагают использование возможностей современных компьютеров. К ним относятся, в частности, кластерный анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости.

Методы оценивания и проверки гипотез опираются на вероятностные модели происхождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что характеристики изучаемых объектов описываются посредством распределений, зависящих от (одного или нескольких) числовых параметров. Непараметрические модели не связаны со спецификацией параметрического семейства для распределения изучаемых характеристик. В математической статистике оценивают параметры и функции от них, представляющие важные характеристики распределений (например, математическое ожидание, медиана, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используют точечные и интервальные оценки.

Большой раздел современной математической статистики — статистический последовательный анализ, фундаментальный вклад в создание и развитие которого внес А. Вальд во время Второй мировой войны. В отличие от традиционных (непоследовательных) методов статистического анализа, основанных на случайной выборке фиксированного объема, в последовательном анализе допускается формирование массива наблюдений по одному (или, более общим образом, группами), при этом решение об проведении следующего наблюдения (группы наблюдений) принимается на основе уже накопленного массива наблюдений.

В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчётов, так и для имитационного моделирования (в частности, в методах размножения выборок и при изучении пригодности асимптотических результатов).

Основными объектами изучения для математической статистики являются случайные величины. Это функции, определенные на некоторых случайных событиях ("случайное событие" - основное понятие теории вероятностей; как известно, сам термин "вероятность" осмыслен лишь применительно к некоторому случайному событию) и принимающие числовые значения. В качестве типичного для социолога случайного события является выбор того или иного респондента. Случайными величинами могут служить признаки, определенные для этих респондентов. Скажем, возьмем такой признак, как возраст. "Переходя" от события к событию. т.е. от одного респондента к другому (скажем, перебирая анкеты), мы будем фиксировать разные значения возраста (18, 36, 24,... лет), т.е. разные значения нашей случайной величины. Случайная величина может быть многомерной - например, когда ей отвечает несколько признаков, а ее значениями являются не отдельные числа, а сочетания чисел - значений рассматриваемых признаков. Скажем, если наряду с возрастом мы будем учитывать пол (0 - мужчина, 1 - женщина) и зарплату (в рублях), то в качестве значений нашей трехмерной случайной величины могут выступать, например, тройки чисел: (18, 0, 524), (36, 1, 1200) и т.д.

Сказанным не ограничивается определение случайной величины. Мы не упомянули самого главного - для каждой совокупности значений случайной величины должна быть определена вероятность того, что, обследуя респондентов, социолог встретит значение из этой совокупности. Напомним, что вероятностью события называют некоторую числовую характеристику степени возможности его появления в определенных, могущих повторяться неограниченное число раз, условиях.

Совокупность вероятностей встречаемости значений рассматриваемой случайной величины называется отвечающим ей распределением вероятностей, или просто ее распределением. Функция, задающая для определенных наборов значений случайной величины отвечающую им вероятность, называется функцией распределения этой случайной величины. Задать случайную величину, по существу, и означает задать соответствующее вероятностное распределение.

Математическая статистика позволяет находить широкий круг статистических закономерностей. Любая из них является некоторым набором параметров вероятностных распределений рассматриваемых случайных величин (одномерных и многомерных). Такого рода характеристиками являются, к примеру, разные меры средней тенденции, разброса значений случайных величин, связи между признаками и т.д. Результат, скажем, регрессионного анализа можно рассматривать как совокупность коэффициентов регрессии, которые в конечном итоге тоже являются некоторыми параметрами исходного многомерного распределения (характеристиками многомерной случайной величины) и т.д. Однако сами параметры, в той же мере, как и те вероятности, на базе которых они рассчитываются, остаются неизвестными исследователю. Вместо истинных значений параметров мы имеем только их выборочные оценки, рассчитанные на основе частотных распределений. Эти оценки называются статистиками.

Итак, поскольку исследователь изначально имеет дело лишь с частотами, а не с соответствующими вероятностями, то фактически исходные случайные величины предстают перед ним в весьма приближенном виде. То, что на основе выборочных данных мы рассчитываем не сами параметры распределений, а лишь их выборочные оценки (отвечающие им статистики), усугубляет степень приблизительности искомых закономерностей.

Распределение числовой случайной величины – это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.

Первое – если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р(Х = х), ставящей каждому возможному значению х случайной величины Х вероятность того, что Х = х.

Второе – если случайная величина принимает бесконечно много значений. Это возможно лишь тогда, когда вероятностное пространство, на котором определена случайная величина, состоит из бесконечного числа элементарных событий. Тогда распределение задается набором вероятностей P(a < X <b) для всех пар чисел a, b таких, что a<b. Распределение может быть задано с помощью т.н. функции распределения F(x) = P(X<x), определяющей для всех действительных х вероятность того, что случайная величина Х принимает значения, меньшие х. Ясно, что

P(a < X <b) = F(b) – F(a).

№13. Дискретная случайная величина.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями. Закон распределения дискретной случайной величины можно задать таблично, в виде формулы (аналитически) и графически.

Числа, которые описывают случайную величину суммарно, называют числовыми характеристиками случайной величины.

№14. Математическое ожидание дискретной и случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности: ,
где – возможные значения случайной величины , а – соответствующие вероятности.

Замечание. Вышеприведенная формула справедлива для дискретной случайной величины, число возможных значений которой конечно. Если же случайная величина имеет счетное число возможных значений, то для нахождения математического ожидания используют формулу:
, причем это математическое ожидание существует при выполнении соответствующего условия сходимости числового ряда в правой части равенства.

Вероятностный смысл математического ожидания: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.





Дата публикования: 2015-02-03; Прочитано: 436 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...