Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определение. Скалярным произведением в векторном пространстве над полем называется функция для элементов



Скалярным произведением в векторном пространстве над полем называется функция для элементов , принимающая значения в , определенная для каждой пары элементов и удовлетворяющая следующим условиям:

  1. для любых трех элементов и пространства и любых чисел справедливо равенство (линейность скалярного произведения по первому аргументу);
  2. для любых и справедливо равенство ,где черта означает комплексное сопряжение (эрмитова симметричность);
  3. для любого имеем , причем только при (положительная определенность скалярного произведения).

Действительное линейное пространство со скалярным произведением называется евклидовым, комплексное — унитарным.


Заметим, что из п.2 определения следует, что действительное. Поэтому п.3 имеет смысл несмотря на комплексные (в общем случае) значения скалярного произведения.

[править] Элементарное определение

AB = | A | | B | cos(θ)

Элементарное определение скалярного произведения используется, когда определения длины вектора и угла между векторами введены независимым образом до введения понятия скалярного произведения (как правило, так и поступают при изложении элементарной геометрии). В этом случае скалярное произведение определяется через длины сомножителей и угол между ними:

Современная аксиоматика обычно строится начиная со скалярного произведения, и тогда длина вектора и угол определяются уже через скалярное произведение (см. ниже).

[править] Связанные определения

В современном аксиоматическом подходе уже на основе понятия скалярного произведения векторов вводятся следующие производные понятия:

[править] Примеры

при разложении векторов по которому:

,

итд,

скалярное произведение будет выражаться приведенной выше формулой:

.

при этом сама метрика (говоря точнее, ее представление в данном базисе) так связана со скалярными произведениями базисных векторов :

·

где К — положительно определённая, в первом случае симметричная относительно перестановки аргументов (при комплексных x — эрмитова) функция (если нужно иметь обычное симметричное положительно определённое скалярное произведение).

[править] Неравенство Коши — Буняковского

Для любых элементов и линейного пространства со скалярным произведением выполняется неравенство [1]

[править] Применение

Использование скалярного произведения крайне широко, как в элементарных, так и в весьма абстрактных областях математики, физики и прикладных наук.

Широко известны следующие применения:

· Например, теорема косинусов легко выводится с использованием скалярного произведения:

· Угол между векторами:

· Оценка угла между векторами:

в формуле знак определяется только косинусом угла (нормы векторов всегда положительны). Поэтому скалярное произведение > 0, если угол между векторами острый, и < 0, если угол между векторами тупой.

· Проекция вектора на направление, определяемое единичным вектором :

,

· условие ортогональности[2] (перпендикулярности) векторов и :

итд.

(При этом технические возможности вычислений со скалярными произведениями, как и вообще с векторами, значительно возрастают, если использовать — при желании или необходимости — и компонентное представление векторов вкупе с компонентным выражением скалярного произведения).

[править] Обобщения

Простейшим обобщением конечномерного скалярного произведения в тензорной алгебре является свёртка по повторяющимся индексам. Аналогичное обобщение в принципе нетрудно сделать и в бесконечномерном случае (Для бесконечномерных пространств функций — см. примеры (выше)).

[править] Примечания

  1. Ортонормированность базиса определяется условием

заключающемся в равенстве нулю скалярных произведений разных базисных векторов, например, первого и второго, первого и третьего, итд (ортогональность), и равенстве единице — скалярного произведения каждого базисного вектора с самим собой (нормированность). Упоминаемые в основном тексте формулы получаются прямым перемножением векторов, разложенных по такому базису, учитывая свойства скалярного произведения, особенно его билинейность, позволяющую раскрывать скобки итп как при вычислениях с обычными числами.

  1. В абстрактной формулировке названное условие — это всего лишь определение ортогональности. Аналогично, две формулы выше в абстрактной формулировке также являются просто определениями соответствующих понятий через скалярное произведение, но они все могут с успехом быть использованы в конкретных вычислениях, например, в элементарной геометрии, независимо от того, какая система определений используется, современная абстрактная или традиционная элементарная.

Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно n -мерное евклидово пространство обозначается , хотя часто используется не вполне приемлемое обозначение .

1. Конечномерное гильбертово пространство, то есть конечномерное вещественное векторное пространство с введённым на нём (положительно определенным) скалярным произведением, порождающим норму:

,

в простейшем случае (евклидова норма):

где (в евклидовом пространстве всегда можно выбрать базис, в котором верен именно этот простейший вариант).

2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:

,

где и .





Дата публикования: 2015-02-03; Прочитано: 540 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...