Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Угол между прямыми. Условия параллельности и



перпендикулярности двух прямых.

1. Если прямые L1 и L2 заданы общими уравнениями

А1х + В1у + С1 = 0 и А2х + В2у + С2 = 0,

то угол между ними равен углу между их нормалями, то есть между векторами {A1,B1} и {A2,B2}. Следовательно,

. (7.10)

Условия параллельности и перпендикулярности прямых тоже сводятся к условиям параллельности и перпендикулярности нормалей:

- условие параллельности, (7.11)

- условие перпендикулярности. (7.12).

2. Если прямые заданы каноническими уравнениями (7.5), по аналогии с пунктом 1 получим:

, (7.13)

- условие параллельности, (7.14)

- условие перпендикулярности. (7.16).

Здесь и - направляющие векторы прямых.

3. Пусть прямые L1 и L2 заданы уравнениями с угловыми коэффициентами (7.8)

у = k1x +b1 и y = k2x + b2, где , а α1 и α2 – углы наклона прямых к оси Ох, то для угла φ между прямыми справедливо равенство: φ = α2 - α1. Тогда

. (7.17)

Условие параллельности имеет вид: k1=k2, (7.18)

условие перпендикулярности – k2=-1/k1, (7.19)

поскольку при этом tgφ не существует.

Расстояние от точки до прямой.

Рассмотрим прямую L и проведем перпендикуляр ОР к ней из начала координат (предполагаем, что прямая не проходит через начало координат). Пусть n – единичный вектор, направление которого совпадает с ОР. Составим уравнение прямой L, в которое входят два параметра: р – длина отрезка ОР и α – угол между ОР и Ох.

у Для точки М, лежащей на L, проекция вектора ОМ на прямую

L ОР равна р. С другой стороны, прnOM=n·OM. Поскольку

Р n ={cos α, sin α }, a OM ={ x,y }, получаем, что

n M x cosα + y sinα = p, или

О х x cosα + y sinα ­­- p = 0 - (7.20)

- искомое уравнение прямой L, называемое нормальным

уравнением прямой (термин «нормальное уравнение» связан

с тем, что отрезок ОР является перпендикуляром, или нормалью, к данной прямой).

Определение 7.2. Если d – расстояние от точки А до прямой L, то отклонение δ точки А от прямой L есть число + d, если точка А и начало координат лежат по разные стороны от прямой L, и число – d, если они лежат по одну сторону от L.

Теорема 7.1. Отклонение точки А(х00) от прямой L, заданной уравнением (7.20), определяется по формуле:

. (7.21)

Доказательство.

у Q Проекция OQ вектора ОА на направление ОР равна

P A n·OA =x0 cosα + y0 sinα. Отсюда δ = PQ=OQ-OP=OQ-p =

n x0 cosα + y0 sinα - p, что и требовалось доказать.

O

L

Следствие.

Расстояние от точки до прямой определяется так:

(7.22).

Замечание. Для того, чтобы привести общее уравнение прямой к нормальному виду, нужно умножить его на число , причем знак выбирается противоположным знаку свободного члена С в общем уравнении прямой. Это число называется нормирующим множителем.

Пример. Найдем расстояние от точки А (7,-3) до прямой, заданной уравнением

3 х + 4 у + 15 = 0. А ² + B ²=9+16=25, C =15>0, поэтому нормирующий множитель равен

-1/5, и нормальное уравнение прямой имеет вид: Подставив в его левую часть вместо х и у координаты точки А, получим, что ее отклонение от прямой равно

Следовательно, расстояние от точки А до данной прямой равно 4,8.





Дата публикования: 2014-11-28; Прочитано: 260 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...