![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Последовательность проектирования
1. выбор принципиальной схемы механизма
2. выбор материала
3. расчет основных размеров деталей механизма по тем критериям работоспособности, которые являются в данном случае наиболее важными
4. проведение проверочных расчетов по всем основным критериям работоспосбности
Виды механических передач.
По принципу передачи вращения | С постоянным контактом | С гибкой связью |
Трением | Фрикцион. | Ремен. |
Зацеплен. | Зубчатые, червяные, винтовые и др. | Цепные, ременно-зубчатые |
Передачи могут быть понижающие – редукторы и повышающие – мультипликаторы. Передаточное число определяется отношением w1/w2 = n1/n2, 1 – ведущее, 2 – ведомое. По числу степеней передачи делятся на:
– бесступенчатые (вариаторы)
– одноступенчатые
– многоступенчатые (с помощью зуб. колес, либо ременными передачами со ступенчатыми шкивами).
В зависимости от расположения валов различают передачи:
1) с параллельными валами:
– зубчатые передачи
– фрикционные передачи
– ременные передачи
– цепные передачи
2) с пересекающимися валами
– коническая передача
3) с перекрещивающимися валами
– червячные передачи
– винтовые передачи
Виды механических
передач
1) фрикционные передачи
Преимущества:
– простота конструкции
– постоянство угловой скорости
– возможность применения для бесступенчатого регулирования угловой скорости
– бесшумность работы
Недостатки:
– большие нагрузки на валы Þ низкий КПД
– большие габариты (больше, чем у зубчатых при одном и том же передаточном отношении)
– большое тепловыделение
2) Зубчатые передачи
Преимущества:
– небольшие габариты
– высокая несущая способность (моменты, скорости частоты)
– высокий КПД
– постоянство передаточного отношения
Недостатки:
– требует высокой точности изготовления
– требуют хорошей смазки
– шумная работы
3) Червячные передачи
Преимущества:
– плавность работы
– мыле габариты при большом пер. отношении
Недостатки:
– низкий КПД
– нагрев
– износ зубьев
– применение дорогостоящих материалов
4) Ременные передачи
Преимущества:
– простота и бесшумность
– возможность большого межосевого расстояния
– возможность бесступенчатого регулирования.
– предохраняют от перегрузки
Недостатки:
– невысокая нагрузочная способность
– низкий ресурс ремня
– непостоянство передаточного отношения
5) Цепные передачи
Достоинства:
– возможность применения в значительном диапазоне межосевых расстояний
– габариты, меньшие, чем у ременной передачи
– отсутствие проскальзывания
– высокий КПД
– малые силы, действующие на валы
Недостатки:
– работает в условиях отсутствия жидкостного трения
– требует большой степени точности установки валов
– неравномерность хода цепи
Порядок расчета привода
1) Подбор электродвигателя
а) мощность на приводном валу;
б) КПД всей цепи (hзуб=0,96,
hцеп= 0,93);
в) Ориентировочная потребная мощность электродвигателя;
г) Выбираем двигатель по каталогу по значению ориентировочно потребной мощности.
2) Частота вращения приводного вала n = 60V /pd;
3) Определяем значение Uобщ = nел.дв /
n пр.вала;
4) Находим передаточное число каждой из передач;
5) Определяем частоты вращения каждого из валов (начиная с первого – ел. двигателя);
6) Находим мощность на каждом валу (начиная с последнего – приводного);
7) Определяем вращающиеся моменты на валах (T1=9550 × P1/n1, Ti= Ti-1×Uпер×hпер);
8) Находим диаметры валов;
ЗУБЧАТЫЕ ПЕРЕДАЧИ
Достоинства:
– Компактность
– Высокий КПД
– Высокая долговечность
– Надежность работы в разных условиях
– Простота эксплуатации
– Малые нагрузки на валы и опоры
– Неизменность передаточного отношения
Недостатки:
– Высокие требования к точности изготовления
– Значительный шум, вследствие неточности изготовления
– Передача не смягчает вибрации, а сама является их источником
– Не может служить предохранителем
– Большие габариты при необходимости больших межосевых расстояний
– Невозможность обеспечить бесступенчатое регулирование.
Классификация зубчатых передач
1) по конструкции: открытые и закрытые передачи. Открытые не защищены от абразивной пыли, периодическая смазка, валы вмонтированы в отдельные агрегаты, применяются только для тихоходных передач. Закрытые передачи защищены корпусом, смазка окунанием или поливанием под давлением. Высокая точность монтажа.
2) по скорости: весьма тихоходные (£0,5 м/с), тихоходные (0,5 £ V £ 3 м/с), средне тихоходные (3 £ V £ 15 м/с), скоростные (15 £ V £ 40 м/с), высокоскоростные (V > 40 м/с).
3) по расположению валов и форме колес
а) передача с параллельными валами
![]() | ![]() | ![]() |
прямозубая | косозубая | шевронная |
В прямозубой нет осевых сил и больше динамические нагрузки Þ большой шум. В шевронной передаче осевые силы уравновешенны, большой угол наклона зуба и работает плавно.
б) передача с пересекающимися валами
– с прямым зубом
– с косым тангенсальным зубом
– с криволинейным круговым зубом
в) передачи с перекрещивающимися валами
– цилиндрические колеса (винтовая пара)
– конические и червячные колеса
4) по точности изготовления. 12 классов точности, при этом первый самый точный, 12 самый грубый.
Материалы зубчатых колес
1) Стали в нормированном, улучшенном и закаленном состоянии. Ст40, 30ХГТ
2) Стальное литье 35Л, 45Л и т.д.
3) Чугунное литье СЧ30, СЧ50
4) Пластмассы
Виды разрушений зубьев и виды расчетов
1) Излом зуба (изгиб зуба)
а) мгновенный излом от нарушения статической прочности при значительных нагрузках
б) усталостный излом в результате многократного изгиба зуба.
2) разрушение рабочей поверхности в виде:
а) абразивный износ
б) заедание и волочение из-за отсутствия смазки или недостаточной вязкости
в) выкрашивание – появление и развитие усталостных трещин на поверхности. При этом повышаются контактные напряжения.
г) смятие поверхности.
Наиболее опасным является уставлостный излом и усталостное выкрашивание, другие виды разрушение можно избежать конструктивно.
Выводы: закрытая передача на заданный срок службы должна быть рассчитана на сопротивление контактной усталости dH и проверена на сопротивление по изгибу dF. Для открытых передача на заданный срок службы рассчитывается изгиб и проверяются на сопротивление контактной выносливости.
Силы в зубчатой паре
1. В прямозубой передаче действует нормальная сила Fn, которая состоит из следующих сил:
Ft – окружная сила (касательно к начальной окружности), FR – радиальная сила (к центру окружности). Ft=2000×T1/dW1, FR=Ft × tg aW, где aW – угол зацепления.
2) В косозубых передачах действуют следующие силы:
радиальная сила FR=Ft×tg a / cos bW, где bW – угол наклона зуба,
осевая сила (вдоль оси) FX = Ft × tg bW, окружная сила Fn=Ft / (cos a ×cos bW).
Основные параметры зубчатых передач.
m – модуль, aW – межосевое расстояние, Yd =bW(ширина)/dW – коэффициент ширины, a = 20° – угол профиля, U – передаточное число. Для повышения контактной или и изгибной прочности применяют смещение зуборезного инструмента, т.е. a < 20°.
Особенности работы косозубой передачи
Коэффициент перекрытия eb = bW/PX, где bW – ширина колеса, PW – осевой шаг. Если eb целое число, то число полных контактных линий на одновременно зацепляющихся зубьев будет такое же I = bW/PW. Если eb ³ 1, то передача работает как косозубая. Если eb <0,9 – косозубая передача как прямозубая. ea – коэффициент торцевого перекрытия
eg – суммарный коэффициент перекрытия eg = ea + eb.
Определение расчетной нагрузки.
Rn распределяется неравномерно:
1) между одновременно работающими парами зубьев.
2) по длине зуба
3) возникает дополнительная внутренняя динамическая нагрузка.
4) внешняя динамическая нагрузка.
T1H=T1×KH
T1F=T1×KF
Коэффициент нагрузки:
KH = KA×KHV×KHb×KH£
KF = KA×KFV×KFb×KF£,
KA – коэффициент внешней динамической нагрузки;
KHV, KFV – коэффициенты, учитывающие динамическую нагрузку. Зависит от двигателя и от режима нагружения.
KHb, KFb – коэффициенты, учитывающие неравномерность распределения нагрузки по длине контактных линий. Зависит от твердости поверхности зубьев, относительной ширины, расположения колес относительно опор валов.
KH£, KF£ – коэффициент, учитывающий распределение нагрузки по парам зубьев. Для прямозубой передачи равен 1, для косозубой определяется по формуле (См. Приложение), в которой B – фактор, учитывающий влияние торцевой жесткости пары.
Расчет зубчатых передач на сопротивление контактной усталости
Целью расчета является предотвращение усталостного выкрашивания.
Расчет производится по формуле Герца-Беляева. Зависимость Герца-Беляева для нормальных напряжений в месте контакта двух сухих неподвижных цилиндров из изотропных материалов
qH – удельная погонная сила по нормали к профилю; n1, n2 – коэффициент пуансона; E1, E2 – модуль упругости материала, r – радиусы кривизны каждого цилиндра. 1/r=1/r1 ± 1/r2, «+» для внешного зацепления, «–» для внутренного зацепления.
Формула Герца-Беляева для пары зубчатых колес
ZE – коэффициент, учитывающий свойства материалов
Ze – коэффициент, учитывающий суммарную длину контактных линий
– для прямозуб.
– для косозубых
Расчет передач на сопротивление усталости при изгибе
Расчет выполняется при предположениях, что зуб нагружен силой FH, в зацеплении находится одна пара зубьев, а также силы трения отсутствуют.
Наибольшее трение в точке b, однако растягивающий эффект в точке a, r – радиус выпуклости зуба,
£[d]F
YFS – коэффициент, учитывающий форму зуба и концентрацию напряжения
Yb – коэффициент, учитывающий угол наклона
Ye – коэффициент, учитывающий перекрытие зубьев. Ye= 1/e£ – для косозубой передачи, Ye = 1 для прямозубой передачи.
m выбрать по возможности меньше, z соответственно больше. m=(0,01... 0,02)aW. В случае открытой передачи
Расчет по модулю
Если прочность на изгиб является основным критерием работоспособности. Расчет ведется в форме определения модуля по заданным числам зубьев с последующей проверкой контактной прочности (или формула выше)
Допускаемые напряжения
Для расчета переменный режим заменяем эквивалентным.
NE = NS ×mH, NFE=NS ×mF, NS – суммарное число циклов = 60×n×nЗ×Lh, где
Lh – ресурс работы передачи,
nЗ– число зубьев зацеплении,
n– частота вращения.
p = qH/2, p = qF. Допускаемые контактные и изгибные напряжения устанавливаются на основе кривых усталости
NHG = 30×HB2,4, NFG = 4×106. Если NHE£NHG, то qH=6,если NHE>NHG, то qH=20.
Коэффициенты долговечности:
и
qF = 6 для нормальных умеренных колес, qF = 9 для поверхностно-закаленных колес.
Методы повышения контактной и изгибной прочности
Для повышения контактной прочности используется:
1. увеличение твердости рабочей поверхности зубьев путем:
а) изменением материала
б) изменением режима термообработки
в) применением поверхностных обращений
2. исправление геометрического зацепления путем:
а) увеличения смещения инструмента
б) применением нестандартного зацепления
в) увеличением угла наклона зуба b
3. уменьшение расчетной нагрузки путем уменьшения коэффициента KH
Для повышения изгибной прочности применяют:
1. увеличение модуля с одновременным уменьшением числа зубьев (без подрезания)
2. применить смещение инструмента, т.е. увеличить угол зацепления £.
3. применить смещение Х для шестерни за счет колеса
4. уменьшить коэффициент KF
5. поверхностное упрочнение у корня зуба (наклеп, цементация и т.д.)
6. увеличение радиуса кривизны переходной кривой у основания зуба.
Определение основных размеров зубчатой передачи
Начальный диаметр шестерни:
Расчетная ширина колеса:
Межосевое расстояние:
Принимаем стандартное межосевое расстояние
Пересчитываем ширину колеса:
Принимаем стандартную ширину колеса.
Находим ширину шестерни:
bW1 = bW2 + 5
Определение геометрии зацепления зубчатой передачи
Модуль: m=(0,01...0,02)aW
Число зубьев шестерни:
Число зубьев колеса: Z2 = Z1×U
Угол наклона зуба:
Осевой шаг:
Коэффициент осевого перекрытия:
eb = bW2/PX
Начальный диаметр: dW=m×z / cosbW.
Диаметр выступов: d a = dW + 2m
Диаметр впадин: d f = dW – 2,5m
Коэффициент торцевого перекрытия:
ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ
![]() | Передача вращением между перекрещивающимися валами посредством червяка и сопряженного с ним колеса. |
Червяк – винт с трапециидальной или близкой по форме резьбой
Достоинства:
– Возможность получения больших передаточных отношений
– Большая плавность работы
– Малая шумность
– Компактность
Недостатки:
– Большое трение в передачах Þ большой нагрев из-за, большого скольжения, что требует применения дорогостоящей оловянной бронзы
– Очень низкий КПД (60-95%)
– Износ зубьев
– Мощность не выше 50 кВт
Геометрия червячной передачи
Червяк является ведущим, колеса ведомым. Червячная передача бывает следующих типов:
1. Цилиндрическая – делительная и начальная поверхности червяка и колеса круговые цилиндры.
2. Глобоидные – делительная поверхность является частью вогнутой поверхности тора (глобоида)
![]() | Нагрузочная способность червяка выше за счет увеличения числа зубьев колеса, находящего в зацеплении с витками червяка. |
Виды цилиндрических червяков
Бывают линейчатые и нелинейчатые. Линейчатые образуются винтовым движением прямой линии, а нелинейчатые винтовым движением конической или тороидальной формы.
К линейчатым относится 3 типа:
1. Архимедов ZA
2. Эвольвентный ZJ
3. Конвалютный ZN
Нелинейные обозначаются как ZT
Геометрические параметры червяка и колеса
m – осевой модуль червяка
p = p×m – расчетный осевой шаг червяка
pX = p × z1 – ход витка (шаг винтовой линии)
g = arctg (pX / pd1) – делительный угол подъема линии витка
Делительный диаметр червяка:
d1 = m×z1 / tg g, причем z1 / tg g = q – коэффициент диаметра червяка.
d2 = mz2 – число зубьев колеса
a = (d1 + d2) / 2 – межосевое расстояние
Кинематика червячных передач
U = w1/w2 = n1/n2 = z2/z1
За 1 оборот червяк повернется на угол y, а колесо на угол y2 = y × pX / pd2.
V1 – окружная скорость червяка на диаметре dW1, V2 – окружная скорость колеса на диаметре dW2, gW– начальный угол подъема витка
Силы червячном в зацеплении
Окружная сила червяка (касательная к начальной окружности)
Ft1 = 2000T1/dW1
Осевая червяка (вдоль оси) FX1= Ft2
Радиальная червяка (к центру окружности) FR1=FR2=Ft2×tg £,
Окружная колеса Ft2= 2000T2/dW2
Осевая колеса FX2=Ft1.
Приведенный коэффициент
передачи и КПДчервячного редуктора
КПД в червячном редукторе определяют по зависимости
Приведенный угол трения j¢= arctg f¢,
f¢= f / cos £, где f¢– приведенный коэффициент трения, f –коэффициент трения.
Чем мягче материал колеса, тем более скорость скольжения, тем чище рабочая поверхность и меньше приведенный угол трения.
При j¢> gWпередача самотормозящая gW= arctg (z1/(q+2X), где gW– начальный угол подъема витка, q – коэффициент диаметра червяка, x – коэффициент смещения. Общий КПД передачи определяется как x= xзацепления×xразбрызг. масла
Критерий рабососпособности
Работоспособность червячной передачи ограничивается:
1) стойкостью рабочих поверхностей зубьев;
2) изгибной прочностью зубьев;
3) предельной допустимой температурой масла или корпуса;
4) прочностью и жесткостью червяка.
Основные виды разрушений
1) усталостное выкрашивание
2) заедания
3) механическое изнашивание материалов червяка и венцов колес.
Большое скольжение в зацеплении требует, чтобы материал червяка и венца являлся антифрикционной парой.
Червяк изготавливают из углеродистых легированных сталей, реже из чугунов, а венец колеса из бронзы, латуни, чугуна и неметаллических материалов.
Коэффициент нагрузки
K = Kb + KV, где Kb – коэффициент равномерности распределения нагрузки вдоль линии контакта вследствие деформации червяка, KV – коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении. В формуле определения Kb (см. приложение) q – коэффициент деформации червяка, nср – средняя относительная нагрузка. KV зависит от скорости скольжения, точности изготовления передачи. (Формула в приложении) nT – степень точности.
Формула Герца-Беляева для червячной передачи
E1, E2 –модуль упругости, n1, v2 – коэффициент Пуассона, Wn – погонная нагрузка, r – приведенный радиус кривизны.
Формула Герца для червячного зацепления:
£ [d]H МПа, где ZM – коэффициент, учитывающий механические свойства материалов червячной пары, ZH – коэффициент, учитывающий форму рабочих поверхностей червячной пары, Ze – коэффициент, учитывающий суммарную длину контактных линий, Zd – коэффициент, учитывающий условный угол охвата, d2 – делительный диаметр колеса, dW1 – начальный диаметр червяка, K– коэффициент нагрузки.
ZH = Ö[cos2 gW / sin2 £nW] при Архимедовом червяке (ZK), ZH = Ö[cos2 gW / (cos £n × sin gb × cos g)] при эвольвентном червяке (ZJ), где £nW – угол профиля в нормальном сечении на начальном цилиндре червяка, £n – угол профиля в нормальном сечении зуба рейки, сопряженной с червяком, gb – основной угол подъема витка червяка, g – делительный угол подъема.
Ze = Ö[1 / (e£ × Ke)], где e£ – коэффициент осевого перекрытия.
Расчет рабочих поверхностей зубьев колес по контактным напряжениям
Расчет [d]H базируется на кривых усталости.
dHm ×N = const, где m – степень кривой усталости, m = 8 при контакте. [d]HO – допускаемое контактное напряжение при базовом числе циклов NHO=107.
В передачах с венцами из оловянных бронз допускаемые напряжения контакта [dH] определяется из отсутствия усталостного выкрашивания рабочей поверхности за рабочий срок службы LH:
[d]H = [d]HO × CV ×KHL £ 4dT2 / ÖKП, где CV – коэффициент, учитывающий влияние скорости скольжения на интенсивность изнашивания зубьев, KHL – коэффициент долговечности
NHE – эквивалентное число циклов нагружений, KП = Tпуск/Tmax– коэффициент перегрузки. В передачах с колесам и из безоловянной бронз, латуни и чугунов [d]H определяют из отсутствия заедания: [d]H = [d]HO × CV¢, где CV¢ – коэффициент, учитывающий влияние скорости скольжения на проявление заедания.
Проверка зубьев на статическую контактную прочность
dH ПИК = dH×ÖKП £ [d]H СТАТ , где KП – коэффициент перегрузки.
Меры повышения контактной прочности
1. Увеличение твердости и чистоты обработки рабочей поверхности червяка;
2. Применение червяка с вогнутым профилем витков;
3. Выбор более современного способа отливки венца для оловянного способа;
4. Уменьшение коэффициента диаметра червяка q для венцов из безоловянной бронз, латуни, чугунов. Чем скорость скольжения выше, тем меньше опасность заедания.
5. Выбор смазочного материала, способного образовывать на поверхности контакта более прочные пленки.
Дата публикования: 2014-11-19; Прочитано: 244 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!