Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
кальдеры Узон (по Карпову). 1 — зона растворов сульфатно-хлоридно-натриевого состава; 2 — зона сульфатных вод; 3 — зона растворов сульфатно-хлоридно-бикарбо- натного состава; 4 — зона хлоридно-сульфатных растворов; 5 — пресные инфильтра-
ционные воды; 6 — зона ртутно-сурьмяно-мышьякового оруденения; 7 — граница зоны разных гидрохимических типов вод; 8 — уровень грунтовых вод; 9 — разломы; 10 — пути миграции глубинных флюидов; 11 — пути инфильтрации вадозовых вод;
12 — источники: а — газирующие «холодные» углекислые; б — термальные
например в Исландии, на Камчатке, в Индонезии, Кордильерах Северной Америки, Японии и других местах. Высота фонтана у гейзеров, так же как и температура воды на выходе, сильно различается, но последняя обычно колеблется в пределах от +75 до +100 °С. Характерной чертой гейзеров является их короткая жизнь, часто они «умирают» за счет обвалов стенок канала, понижения уровня грунтовых вод и т. д. Наиболее грандиозным гейзером был Уаймангу (что значит «Крылатая вода») в Новой Зеландии, существовавший всего пять лет
и выбрасывавший мощный фонтан почти на полкилометра вверх. Интервалы между извержениями у гейзеров варьируют от нескольких минут до многих часов и дней. Большое количество растворенных веществ в горячей воде гейзеров откладывается вокруг их устья, образуя скопления гейзеритов.
Каким образом действует гейзер? Наиболее удовлетворительное объяснение механизма его функционирования было предложено еще в XX в. Механизм заключается в том, что в трубообразном канале, заполненном водой, нижняя часть ее столба нагревается выше точки кипения (рис. 15.48). Однако вес столба воды предотвращает вскипание. Наконец кипение все же начинается в каком-то месте и ряд расширяющихся пузырей выталкивает часть воды из столба, что сразу же вызывает падение давления внизу столба воды, и мгновенно начинается бурное кипение. Процесс идет лавинообразно, пока вся вода не превратится в пар и он не вытолкнет вверх всю горячую воду. Затем канал вновь наполняется водой, она нагревается и процесс начинается сначала
I *
т i || д |
—---------------------------------------------------------------------------------- С W | |
tmC^jj |
Рис. 15.48. Схема действия гейзера. 1 — снизу поступает горячая вода; 2 — уровень воды повышается, пузырьки собираются в узком месте; 3 — пузырьки выдавливают воду вверх, и она начинает переливаться через край жерла; 4 — уменьшение давления превращает воду в пар, и он выбрасывается вверх вместе с водой. Гейзер фонтанирует
Геотермальная энергия — это важная сторона использования вулканического тепла. Электростанции, работающие на естественном перегретом паре, действуют в Италии (Лардерелло в Тоскане), Исландии (около
Рейкьявика), Калифорнии, на Северном острове Новой Зеландии, в районе Паужетки на Южной Камчатке и в ряде других мест. Сочетание благоприятных для выработки электроэнергии условий — высокое давление пара, температура выше точки кипения воды, большой ее приток — встречается не так уж часто. Проблемы возникают и из-за очень быстрой коррозии металлических труб из-за агрессивных горячих вод, которые к тому же откладывают на стенках труб карбонат кальция и кремнезем, закупоривая их. Горячие воды используются для обогрева жилищ, парников и теплиц.
15.8. ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ ДЕЙСТВУЮЩИХ ВУЛКАНОВ И ПОНЯТИЕ О МАГМАТИЧЕСКИХ ОЧАГАХ
В настоящее время известно около 1000 активных вулканов, размещенных на поверхности Земли в обособленных поясах и, реже, располагающихся в виде отдельных групп (рис. 15.49). Следует оговориться, что иногда трудно установить, является ли вулкан действующим или окончательно потухшим, т. к. в ряде случаев вулканы не проявляют себя в течение тысяч лет, а потом вдруг становятся активными.
Рис. 15.49. Расположение действующих вулканов на земном шаре. Черные кружки — вулканы |
Самое больше количество действующих вулканов, примерно 75 %, располагается по периферии Тихого океана в пределах так называемого «огненного» кольца, где они приурочены к активным континентальным окраинам, конвергентным границам литосферных плит, где океаническая кора погружается, субдуцирует под континентальную. В результате взаимодействия холодной и тяжелой пластины океанической коры и более легкой континентальной под воздействием флюидов и температуры образуются первичные магматические очаги, дающие начало целой серии вторичных очагов. Вулканизм проявляется либо в островных дугах: Алеутской, Филиппинской, Индонезийской и др., либо в пределах окраинно-континентальных вулканических поясов: Андийского, Центрально-Американского, Северо-Американского. Все эти структуры отделены от океана глубоководными желобами — зонами погружения океанических плит под континентальные. От желобов в сторону континентов прослеживаются наклонные зоны гипоцентров — очагов землетрясений, уходящих на глубину до 600 и даже 700 км. Гипоцентры приурочены к верхней части лсесткой и холодной океанической литосферы. Сейсмофокалъные зоны впервые были открыты в 30-х гг. XX в. под Японией К. Вадаги, в 1946 г. эти идеи развил А. Н. Завариц- кий, а в 50-х годах геофизик из США X. Беньоф. Действующие вулканы обычно располагаются над глубинами гипоцентров 100-200 км в сейсмофокальной зоне. Именно этот отрезок в астеносфере над суб- дуцируемой океанической плитой оказывается магмогенерирующим. Отсюда первые капли образовавшейся магмы поднимаются вверх, сливаясь и образуя первичные магматические очаги, а выше еще ряд этажей приповерхностных очагов, из которых и происходят извержения вулканов. В Тихоокеанском кольце действующих вулканов шире всего распространены средние и кислые породы: андезиты, дациты и ри- олиты.
Второй тип областей, в которых находятся действующие вулканы, — это океанические бассейны всех активных вулканов, в которых следует различать вулканы, приуроченные к современным рифтовым зонам, и внутриплитные вулканы, часть из которых с «горячими точками».
Несмотря на то что в срединно-океанических хребтах очень много свежих лавовых куполов и потоков базальтов, активных современных вулканов довольно мало. Прежде всего это вулканы Исландии — острова, возникшего на оси Срединно-Атлантического хребта, южнее — вулканы Азорских островов, Тристан-да-Кунья; в Индийском океане — вулканические острова Реюньон, Кергелен, Коморские. Все эти вулканы приурочены к дивергентным границам океанических литосферных плит, характеризующихся обстановкой тектонического растяжения и излиянием толеитовых базальтов.
Внутриплитных океанических активных вулканов тоже не очень много. Наиболее известные — Гавайские вулканы, расположенные в центре Тихого океана. Они находятся на юго-восточном окончании Гавайского подводного вулканического хребта и, по-видимому, приурочены к длительно функционирующей «горячей точке», или «плюму». В Атлантическом океане, несколько в стороне от срединного хребта, располагаются молодые вулканические острова: Зеленого Мыса, Канарские, Мадейра, Св. Елены, Фернанду-ди-Норонья, Мартин-Вас.
Молодых гор вулканического происхождения в океанах очень много, и, по разным оценкам, их число превышает несколько десятков тысяч. Согласно данным Г. Макдоналда (1975), 75 % действующих вулканов находятся в Тихоокеанском кольце, около 13 % — в Атлантическом океане, 1 % — в Индийском океане, остальные вулканы расположены на континентах.
В Африке активный вулканизм развит в Восточно-Африканской рифтовой зоне, где в Кении и Танзании находятся известные вулканы Ол-Доньо-Ленгаи, Меру, Телени, Кения, Элгон, Килиманджаро, Ви- рунга, Нирагонго, Ньямлагира и др. Активные вулканы есть и в Камерунском рифте в Западной Африке.
Действующие вулканы есть и в молодом Альпийско-Средиземноморском складчатом поясе, в районе, окружающем Тирренское море, сформировавшемся в плиоцене за счет рассеянного спрединга. Это знаменитые вулканы Липарских островов: Стромболи, Липари, Вулькано, Этна в Сицилии и, конечно, Везувий около Неаполя. В складчатом поясе очень много вулканов, которые извергались совсем недавно, несколько тысяч или сотен лет назад: Эльбрус, Казбек; Арарат, Немруд, Хасандаг в Турции; Демавенд в Иране и др.
В пределах России находится 51 действующий вулкан, и все они расположены на активной континентальной окраине в пределах Камчатки и Курильской островной дуги. В наши дни извергаются Ключевской и Карымский вулканы, а в 1975 г. камчатские вулканологи очень точно предсказали начало базальтовых извержений в районе вулкана Плоский Толбачик, где возникло четыре новых шлаковых конуса, а объем вулканических продуктов превысил 2 км3.
Таким образом, современное расположение действующих вулканов контролируется конвергентными и дивергентными границами литосфер- ных плит, а также «горячими точками», или «плюмами».
Где и почему возникают те магмы, которые, достигая поверхности Земли, извергаются на нее из разнообразных вулканических аппаратов? Расплавленного сплошного слоя в земной коре или верхней мантии не существует. Для начала плавления твердой горной породы в глубинах Земли необходимы повышение температуры, понижение всестороннего давления и влияние флюидов. Эти факторы могут действовать как все вместе, так и но отдельности. Плавление начинается обычно в местах сочленения минеральных зерен в узлах концентрации напряжений. Это место называется первичным магматическим очагом. Образовавшиеся капли расплава стремятся в сторону уменьшения градиента давления и, перемещаясь вверх, сливаются между собой, формируя уже вторичные, или промежуточные, очаги. Если магма движется медленно, она успевает ассимилировать вмещающие породы или подвергнуться гравитационной дифференциации, при которой в низах очага образуется более основной расплав, чем в верхах. О наличии многоярусных очагов свидетельствуют геофизические исследования, например, Камчатских вулканов, под которыми выявляются несколько «этажей» магматических очагов (рис. 15.50).
I II III Рис. 15.50. Магматические очаги Камчатки, по сейсмическим данным (по В. А. Ермакову, С. Т. Балесте, М. И. Зубину и др.). I — вулкан Ключевской, II — вулкан Безымянный, III — вулканы Южной Камчатки. Слои земной коры: 1 — осадочный, 2 — гранитометаморфический, 3 — гранулитобазитовый. М — поверхность Мохо. Черным цветом показана магма |
Очень часто наиболее высоко расположенный магматический очаг находится почти в основании вулканической постройки (рис. 15.51). Подобные близповерхностные очаги известны под Эльбрусом, Этной в Сицилии, вулканом Святой Елены в Каскадных горах США, под Гавайскими вулканами и др.
магматический очаг Рис. 15.51. Структурная модель вулкана.Этна (Сицилия), по сейсмическим данным. Близповерхностный магаагический очаг располагается непосредственно под вулканом на контакте с субстратом |
Очевидно, что базальтовая магма в больших объемах поступает непосредственно из верхней мантии, например в рифтовых зонах океанов или в трапповых провинциях континентов. А кислая магма может образоваться как в результате процессов магматической дифференциации, так и путем плавления участков гранитно-метаморфического слоя, или анатексиса. В целом можно отметить, что магматические очаги возникают либо в самых верхах мантии, либо в земной коре.
Существуют грязевые вулканы, связанные с районами развития нефтяных залежей (Апшеронский, Таманский, Керченский п-ова, Иран и др.), действующей силой в которых является не магма, а газы органического происхождения, выброс которых формирует грязевые вулканы, высотой в десятки и сотни метров, с кратерами, из которых изливаются потоки грязи с обломками осадочных пород (рис. 35 и 36 на цветной вклейке).
27. УХ4
Глава 16 МЕТАМОРФИЧЕСКИЕ ПРОЦЕССЫ
Метаморфизм — это процесс преобразования первично магматических или осадочных пород под воздействием температуры (Т), давления (Р) и флюидов (F), преимущественно водно-углекислых жидких или газожидких флюидов, содержащих ионы К, Na, Са, F, В, S и др., часто существующих в надкритических растворах.
Метаморфические изменения в горных породах начинаются при повышении температуры до +200 °С и увеличении всестороннего, т. е. литостатического, давления, возникающего под тяжестью вышележащих пород. Однако не только это давление играет важную роль. Не меньшее значение имеют стресс, боковое давление, обеспечивающее различное напряженное состояние горных пород, в результате которого открываются пути для миграции глубинных мантийных флюидов, являющихся главными переносчиками тепла, т. к. кондуктивный теплообмен в горных породах крайне незначителен. Без флюидного потока вероятность метаморфизма невелика, хотя необходимо принимать во внимание и геотермический градиент, который сильно изменяется в разных районах (от 5° до 180° и даже более на 1 км глубины).
Перечисленные выше главные факторы метаморфизма — температура, флюиды, давление — оказывают влияние на любые горные породы, находящиеся на различной глубине, при этом время не особенно важно при метаморфизме. Например, лавы раннего протерозоя (2,2 млрд лет) в Прибайкалье почти не отличаются от голоценовых лав (6-4 тыс. лет) Эльбруса; глины кембрийского возраста (550 млн лет) под Санкт-Петербургом выглядят почти так же, как и современные глинистые отложения. Многочисленными нефтяными скважинами вскрыты неизмененные осадочные отложения на глубинах свыше 8 км. Известны случаи, например на о. Исландия, где начальные стадии метаморфизма установлены на глубине всего 0,5 км, по данным бурения. В то же время толщи пород на глубине 20 км, если судить по данным сейсмических исследований, совсем не испытали метаморфических изменений. Поэтому флюиды являются одним из важнейших факторов метаморфизма.
Все метаморфические породы можно разделить на две группы, исходя из того, какие осадочные или магматические породы подвергаются метаморфизму.
Первая группа — парапороды, они образовались из первично осадочных пород. Например, из карбонатных пород получаются мраморы, из песчаников — кварциты, из глин — филлиты и др.
Вторая группа — ортопороды, они сформировались из первично магматических пород, например метабазиты — из базальтов.
16.1. ФАЦИИ МЕТАМОРФИЗМА
Метаморфические породы весьма разнообразны. Из одних и тех же исходных, первичных пород, в зависимости от действия факторов метаморфизма, могут образоваться различные метаморфические породы. Изменение температуры, давления, химического состава флюидов приводит к изменению минерального состава первичной породы, который стремится приспособиться к условиям. Этот комплекс новых минералов, или парагенезис (сонахождение), называется метаморфической фацией (рис. 16.1). Так как исходные породы, подвергающиеся метаморфическим изменениям, чрезвычайно разнообразны, то в пределах одной метаморфической фации могут существовать разные парагенезисы минералов, а одна исходная порода может давать разные метаморфические породы в различных фациях. Например, глина, метаморфизуясь, превращается в глинистые сланцы, а они в фации зеленых сланцев превращаются в филлиты; в амфиболитовой фации — в двуслюдяные сланцы; в гранулитовой фации — в биотит-гиперстен — кордиеритовые гнейсы.
Указанные выше фации — зеленосланцевая, амфиболитовая и гра- нулитовая — отвечают ступеням метаморфизма: низкой, средней и высокой, отвечающим степени усиления метаморфических преобразований первичной породы (рис. 16.2, 16.3). Гранулитовая фация и соответствующий ей парагенезис минералов свидетельствуют о температуре +700-1000 °С, давлении от 2 до 12 Кбар и глубине 1040 км. При меньших температурах и давлениях другие минеральные парагенезисы будут характеризовать другие метаморфические фации — амфиболитовую, энидот-амфиболитовую, зеленосланцевую, цеолитовую.
Переход от пород низших ступеней метаморфизма к высшим называется прогрессивным метаморфизмом. Если уже метаморфизованная порода подвергается воздействию более низких температур и давлений, то говорят о регрессивном (ретроградном) метаморфизме, или ди- афторезе.
породы контактного метаморфизма | ||
1 зелено | ||
I сланце- | ||
1 вая | ||
амфиболитовая | ||
гранулитовая | ||
эклс | Ч гитоЬ^я | |
ч |
0,2 |
0,4 |
m q 0,6 |
0,8- |
■ 5 |
-15 |
■ 20 |
200 400 600 800
О
I |
Температура, С Рис. 16.1. Основные фации метаморфизма
100 200 300 400 500 600 700 800 900 1000 Температура, °С Рис. 16.2. Метаморфические фации горных пород (по Л. Л. Перчуку и В. И. Фельдману). Фации регионального метаморфизма: 1 — цеолитовая; 2 — пренит-пумпелии- товая; 3 — зеленых сланцев; 4 — эпидот-амфиболитовая; 5 — амфиболитовая; 6 — гранулитовая; 7 — голубых сланцев; 8 — эклогитовая. Фации контактового метаморфизма: а — эпидот-адьбитовых роговиков; б — роговообманковых роговиков; в — пироксеновых роговиков; г — санидинитовая |
Температура, "С 200 400 600 800 Рис. 16.3. Степени метаморфизма. Черная жирная линия — рост температуры с увеличением глубины |
Существуют породы, наиболее характерные для разных ступеней метаморфизма. Так, для низшей ступени типичны зеленые сланцы, образовавшиеся за счет базальтовых туфов и лав. Их зеленоватая окраска обусловлена развитием хлорита и эпидота.
Для фации зеленых сланцев также типичны филлиты, сложенные очень мелкими, меньше 1 мм, зернами кварца и чешуйками серицита и хлорита. Два последних минерала придают филлитам шелковистый блеск на плоскостях сланцеватости. Хлорит-серицитовые сланцы образуются при метаморфизме глинистых пород, и для них типичны хлорит и слюда — серицит (мелкие чешуйки мусковита), а также кварц.
К низким ступеням метаморфизма относятся весьма необычные породы — глаукофановые, или голубые, сланцы с голубой роговой обманкой, типичные для них минералы. Особенностью формирования этих пород является обстановка низких температур: +200...+400 °С и очень высоких давлений — до 12 кбар, а это отвечает глубине 40 км, если брать литостатическое давление. Но на такой глубине должна быть высокая температура. Однако в сильно метаморфизованных древних докембрий- ских породах голубые сланцы отсутствуют, хотя, судя по огромному давлению, они должны были бы там быть. Эти голубые сланцы являются результатом очень сильного стресса, т. е. одностороннего, а не литостатического давления, возникшего в условиях формирования крупных надвигов и покровов. Поэтому голубые сланцы образуют вытянутые полосы, которые простираются в соответствии с крупными разломами и характерны для зон субдукции.
К средним ступеням метаморфизма относятся разнообразные кристаллические сланцы и амфиболиты. Кристаллические сланцы — полосчатые породы, состоящие из кварца, полевых шпатов и слюд, образующихся как по осадочным породам — песчаникам и глинам (парагнейсы), так и по магматическим — лавам, гранитам и др. (ор- тогнейсы). Амфиболиты состоят из роговой обманки и плагиоклазов, иногда с биотитом и эпидотом, и формируются за счет метаморфизма базальтов и габбро — основных изверженных пород (ортоамфиболи- ты) и карбонатно-глинистых пород (параамфиболиты). Кристаллические сланцы — результат преобразования в основном глинистых пород, состоят из слюд, хлорита и амфибола, образующих характерную сланцеватость.
Амфиболитовая фация метаморфических пород образуется при температуре +500-700 °С и давлении 2-8 кбар. При таких высоких температурах породы начинают испытывать частичное плавление в отдельных тонких слоях с образованием мигмы, а вся порода превращается в мигматит — полосчатые метаморфиты, в которых чередуются полоски гранитного состава (мигма) с полосками темноцветных минералов, еще не вовлеченных в плавление.
К высшей ступени метаморфизма относится гранулитовая фация (температура +700-1000 °С, давление 4-12 кбар, глубины 10-40 км). Характерными породами этой фации являются гнейсы, двупироксе- новые и кристаллические сланцы и эклогиты. Гнейсы состоят из кварца, ортоклаза, плагиоклаза, граната, кордиерита, пироксена, замещающего роговые обманки и слюды. Гранулиты образуются за счет как первично магматических, так и осадочных пород. Эклогиты сложены пироксеном — омфицитом и пироповым гранатом и представлены плотными тяжелыми породами, типичными для глубоких частей земной коры.
Таким образом, повышение температуры, давления и привнос флюидов приводят к изменению первично осадочных и магматических пород и превращению их в метаморфические, различных фаций и ступеней. Усиление действия этих факторов в конце концов приводит к избирательному плавлению наиболее легкоплавких компонентов породы, а потом и к полному плавлению. Этот процесс ультраметаморфизма, в результате которого путем различных пород могут образоваться граниты, называется анатексисом.
Изменения в первичных породах при метаморфизме. Процессы и факторы метаморфизма приводят к изменению минерального состава материнской породы. Например, при реакциях дегидратации происходят следующие превращения минералов:
• мусковит + кварц —» силлиманит + калиевый полевой шпат + вода;
• коалинит —» андалузит + кварц + вода.
Новые минералы возникают в результате химических реакций, а также перекристаллизации минералов первичной породы, которые приобретают новую форму и размеры (рис. 16.4). В связи с увеличением температуры начинается миграция, диффузия ионов сначала вдоль границ зерен минералов, а затем и внутри них, где небольшие ионы прокладывают себе путь между более крупными. И происходит этот процесс в твердом состоянии. В породах средней и высокой степеней метаморфизма можно встретить крупные, кристаллографически хорошо выраженные новые минералы, не типичные для первичной породы. Такие минералы или их скопления размером до нескольких сантиметров в диаметре называются порфиробластами. Они бывают особенно хорошо выражены в кристаллических сланцах.
Усиление метаморфизма | ||||||
Температура | +200 °С ■■■-■' ■ +800-1000 °С | |||||
Минералы | Хлорит Мусковит Биотит Калиевый полевой шпат Гранат Ставролит Силлиманит Гиперсген Кварц Плагиоклазы | |||||
Тип породы | Не измененные | Глинистые сланцы | Филлиты | Кристаллические сланцы | Гнейсы | Плавление |
Рис. 16.4. Новообразование минералов при прогрессивном метаморфизме |
Если при метаморфизме химический состав породы не меняется, то говорят об изохимическом метаморфизме, а если изменяется, то об ал- лохимическом. Но изменения происходят не только с минералами. Происходит изменение структуры, текстуры, и наступает полная перекристаллизация первичной породы. Чешуйки слюды — биотита, мусковита, серицита — приобретают ориентировку в пределах плоскостей, а если минералы, например амфиболы, имеют игольчатую форму, то длинной осью они ориентируются в одном направлении, образуя линейную текстуру. В результате метаморфическая порода приобретает сланцеватую текстуру — тонкие пластинки, на которые порода разбивается при ударе молотком. Пластинки слюды в филлитах обеспечивают шелковистый характер породы. На образование сланцеватой текстуры особенное влияние оказывает стресс — одностороннее, а не литостатичес- кое давление.
16.2. ПАРАМЕТРЫ И ТИПЫ МЕТАМОРФИЗМА
При каких Р-Т (давление-температура) условиях происходил метаморфизм тех или иных пород? Ответить на этот вопрос помогает исследование двухфазных газово-жидких включений, находящихся в минералах и попавших туда в момент роста кристалла. Метод гомогенизации заключается в нагревании кристалла до тех пор, пока включение не гомогенизируется, т. е. не станет однородным. Температура, при которой происходит гомогенизация, и есть минеральное значение температуры образования минерала.
Чтобы установить давление, используют метод геологической тер- мобарометрии, позволяющий рассчитывать Р и Т по составам минералов, находящихся в метаморфической породе, что дает возможность судить о термодинамической обстановке в момент формирования метаморфической породы.
Типы метаморфизма. Метаморфизм может проявиться на огромных площадях и поэтому называется региональным. В других случаях метаморфические изменения захватывают ограниченные участки, и тогда метаморфизм называется локальным.
Региональный метаморфизм является наиболее распространенным, проявляясь на площадях в сотни тысяч квадратных километров, что обусловлено погружением региона на глубины, достаточные для воздействия на первичные толщи пород высоких температур, всестороннего (литостатического) давления и флюидов. Такие метаморфические толщи развиты на древних щитах платформ, например на Балтийском и Украинском в пределах Восточно-Европейской платформы, на Алданском — Сибирской платформы и др. Архейские породы с возрастом свыше 2,5 млрд лет метаморфизованы во всех регионах Земли; протерозойские, с возрастом 2,5-0,57 млрд лет, — избирательно, а фанеро- зойские, моложе 0,57 млрд лет, — только в складчатых областях и то местами, в тех структурах, которые подверглись наибольшему давлению и температурному воздействию. Поэтому в складчатых структурах можно наблюдать, как одновозрастные толщи аргиллитов переходят в глинистые сланцы, затем в филлиты, кристаллические сланцы и, наконец, в гнейсы.
Локальный метаморфизм проявляется на ограниченных площадях и подразделяется на контактовый и динамометаморфизм (дислокационный).
Контактовый метаморфизм развивается в интрузивных массивах, внедряющихся в любые толщи пород, воздействие на которые осуществляется температурой и флюидным потоком (рис. 16.5). Ширина и площадь контактового (экзоконтактового) ореола зависят от типа, состава интрузивного тела и его температуры. Интрузивы типа небольших даек и силлов обладают экзоконтактами от нескольких сантиметров до нескольких метров, и ввиду низкой температуры наблюдается лишь узкая зона дегидратации пород. Крупные гранитные массивы хотя и обладают невысокой температурой, но благодаря энергичному флюидному воздействию на вмещающие породы имеют обширные, до нескольких километров, контактовые ареалы, в которых наблюдается закономерная смена парагенезов минералов от высокотемпературных вблизи интрузивного массива до низкотемпературных — вдали от него. Чем выше температура интрузивного массива, тем развиты в контактовых ореолах более высокотемпературные метаморфические породы.
Среди пород контактового метаморфизма наиболее распространены роговики, массивные темные породы, содержащие кордиерит, андалузит, хлорит и мусковит. Если воздействию гранитов подвергаются карбонатные породы, то возникают скарны, метаморфические породы, которые образовались за счет метасоматоза (замещения) с привносом Si02, Al203, MgO, FeO и В203. Скарны могут возникнуть только под влиянием горячих щелочных флюидов, отделяющихся от остывающего гранитного расплава. Характерными для скарнов являются различные гранаты, турмалин и волластонит (CaSi03); типично образование железных магнетитовых руд, а также сульфидов меди, свинца и цинка, формирующих большие промышленные месторождения. Гора Магнитная прославилась месторождением магнетитовых руд, и в 30-е гг. XX в. около нее возник г. Магнитогорск.
Дата публикования: 2014-11-19; Прочитано: 1049 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!