Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Вектор Умова. Пусть в некоторой среде вдоль оси х распространяется упругая плоская продольная волна, описываемая уравнением (1.91')



Пусть в некоторой среде вдоль оси х распространяется упругая плоская продольная волна, описываемая уравнением (1.91')

Выделим в среде элементарный объем DV такой, что скорость движения частиц d S /dt и деформацию среды d S /d x во всех точках этого объема можно считать одинаковыми. Это означает, что если m – масса всего выделенного объема DV, то он обладает кинетической энергией

а потенциальная энергия упругой деформации этого объема

где Е – модуль Юнга, характеризующий упругие свойства среды.

Используя известное выражение m = rDV (r – плотность среды) и зависимость скорости распространения упругих волн в твердой среде от свойств среды

получим

Тогда полная энергия D W, которой обладает выделенный объем

, (1.144)

Введем следующие физические величины:

1. Плотность энергии w, [Дж/м3] – суммарная энергия колебаний всех частиц, находящихся в единице объема среды:

2. Поток энергии Ф, [Дж/с]– энергия, переносимая волной через некоторую поверхность D S в единицу времени:

3. Плотность потока энергии j, [Дж/(м2 с)] – поток энергии через единичную площадку, расположенную перпендикулярно к направлению, в котором переносится энергия:

Через площадку D S ^ за время Dt пройдет вся энергия DW, содержащаяся в объеме DV:

DW = w DV = w D S ^ v Dt.


Рис. 1.79

Тогда плотность потока энергии:

или в векторной форме

Плотность потока энергии – вектор, направление которого совпадает с направлением вектора фазовой скорости .

Вектор плотности потока энергии называется вектором Умова. Вектор Умова позволяет вычислить полный поток энергии через определенную поверхность.

На основании (1.144) плотность энергии w в выделенном объеме

Взяв производные по времени и по координате от S (x,t), получим w = rА2 w 2sin2(w t – kx + a).

Так как среднее значение , то среднее по времени значение плотности энергии в каждой точке среды

< w > = (1/2) rА2 w 2.

Этим значением определяется интенсивность волны. Важно отметить пропорциональность среднего значения плотности энергии квадрату амплитуды волны.





Дата публикования: 2014-11-03; Прочитано: 569 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...