![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Пусть мы имеем дело с непрерывной случайной величиной
, значения которой получены из наблюдений. Разобьем диапазон наблюдаемых значений
на интервалы ] X0, X1 [, ] X1, X2 [,..., ] Xk-1, Xk [ одинаковой длины
. Пусть mi - число наблюдаемых значений
, попавших в i -й интервал. Разделив mi на общее число наблюдений n, получим частоту
, соответствующую i -му интервалу:
, причем
. Составим следующую таблицу:
| Номер интервала | Интервал | mi |
|
| ] X0, X1 [ | m1 |
| |
| ] X1, X2 [ | m2 |
| |
| ... | ... | ... | ... |
| k | ] Xk-1, Xk [ | mk |
|
которая называется статистическим рядом. Эмпирической (или статистической) функцией распределения случайной величины
называется частота события, заключающегося в том, что величина
в результате опыта примет значение, меньшее x:

На практике достаточно найти значения статистической функции распределения F*(x) в точках X0, X1,..., Xk, которые являются границами интервалов статистического ряда:
| (65) |
Cледует заметить, что F*(x)=0 при x<X0 и F*(x)=1 при x>Xk. Построив точки Mi [Xi; F*(Xi)] и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 15). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе n испытаний с вероятностью, близкой к единице, эмпирическая функция распределения F*(x) отличается сколь угодно мало от неизвестной нам функции распределения F(x) cлучайной величины

Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы ] X0, X1 [, ] X1, X2 [,..., ] Xk-1, Xk [. На каждом интервале строят прямоугольник, площадь которого равна частоте
, соответствующей данному интервалу. Высота hi этого прямоугольника равна
, где
- длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.
Рассмотрим функцию
, которая в интервале ] Xi-1, Xi [ постоянна и равна hi. График этой функции называется гистограммой. Он представляет собой ступенчатую линию (рис. 16). С помощью закона больших чисел Бернулли можно доказать, что при малых
и больших n с практической достоверностью
как угодно мало отличается от плотности распределения
непрерывной случайной величины
.
Пример. Измерен диаметр у 270 валов хвостовика. Значения диаметра (в см) оказались в диапазоне 66-90 см. Разбив этот диапазон на интервалы диной 2 см (
=2), получим статистический ряд (см. таблицу)
| Номера интервалов | Интервалы | mi |
|
|
| (1) | (2) | (3) | (4) | (5) |
| ]66,68[ | 0,015 | 0,008 | ||
| ]68,70[ | 0,045 | 0,022 | ||
| ]70,72[ | 0,090 | 0,045 | ||
| ]72,74[ | 0,152 | 0,076 | ||
| ]74,76[ | 0,185 | 0,092 | ||
| ]76,78[ | 0,196 | 0,098 | ||
| ]78,80[ | 0,144 | 0,072 | ||
| ]80,82[ | 0,096 | 0,048 | ||
| ]82,84[ | 0,048 | 0,024 | ||
| ]84,86[ | 0,019 | 0,009 | ||
| ]86,88[ | 0,007 | 0,004 | ||
| ]88,90[ | 0,003 | 0,002 | ||
| 1,000 |
Построим гистограмму и эмпирическую функцию распределения. Подсчитанные частоты
приведены в столбце (4), а значения высот hi прямоугольников гистограммы - в столбце (5). Гистограмма изображена на рис. 17.

Значения эмпирической функции распределения в граничных точках интервалов вычислены по формуле (65) и приведены в следующей таблице:
| x | |||||||||||||
| F*(x) | 0,015 | 0,060 | 0,150 | 0,302 | 0,487 | 0,683 | 0,827 | 0,923 | 0,971 | 0,990 | 0,997 | 1,000 |
Так, например,

График функции F*(x) изображен на рис.18.
Дата публикования: 2014-11-03; Прочитано: 271 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
